• Вероятностные и статистические модели принятия решений. Методы принятия управленческих решений

    2. ОПИСАНИЕ НЕОПРЕДЕЛЕННОСТЕЙ В ТЕОРИИ ПРИНЯТИЯ РЕШЕНИЙ

    2.2. Вероятностно-статистические методы описания неопределенностей в теории принятия решений

    2.2.1. Теория вероятностей и математическая статистика в принятии решений

    Как используются теория вероятностей и математическая статистика? Эти дисциплины – основа вероятностно-статистических методов принятия решений. Чтобы воспользоваться их математическим аппаратом, необходимо задачи принятия решений выразить в терминах вероятностно-статистических моделей. Применение конкретного вероятностно-статистического метода принятия решений состоит из трех этапов:

    Переход от экономической, управленческой, технологической реальности к абстрактной математико-статистической схеме, т.е. построение вероятностной модели системы управления, технологического процесса, процедуры принятия решений, в частности по результатам статистического контроля, и т.п.

    Проведение расчетов и получение выводов чисто математическими средствами в рамках вероятностной модели;

    Интерпретация математико-статистических выводов применительно к реальной ситуации и принятие соответствующего решения (например, о соответствии или несоответствии качества продукции установленным требованиям, необходимости наладки технологического процесса и т.п.), в частности, заключения (о доле дефектных единиц продукции в партии, о конкретном виде законов распределения контролируемых параметров технологического процесса и др.).

    Математическая статистика использует понятия, методы и результаты теории вероятностей. Рассмотрим основные вопросы построения вероятностных моделей принятия решений в экономических, управленческих, технологических и иных ситуациях. Для активного и правильного использования нормативно-технических и инструктивно-методических документов по вероятностно-статистическим методам принятия решений нужны предварительные знания. Так, необходимо знать, при каких условиях следует применять тот или иной документ, какую исходную информацию необходимо иметь для его выбора и применения, какие решения должны быть приняты по результатам обработки данных и т.д.

    Примеры применения теории вероятностей и математической статистики. Рассмотрим несколько примеров, когда вероятностно-статистические модели являются хорошим инструментом для решения управленческих, производственных, экономических, народнохозяйственных задач. Так, например, в романе А.Н.Толстого «Хождение по мукам» (т.1) говорится: «мастерская дает двадцать три процента брака, этой цифры вы и держитесь, - сказал Струков Ивану Ильичу».

    Встает вопрос, как понимать эти слова в разговоре заводских менеджеров, поскольку одна единица продукции не может быть дефектна на 23%. Она может быть либо годной, либо дефектной. Наверно, Струков имел в виду, что в партии большого объема содержится примерно 23% дефектных единиц продукции. Тогда возникает вопрос, а что значит «примерно»? Пусть из 100 проверенных единиц продукции 30 окажутся дефектными, или из 1000 – 300, или из 100000 – 30000 и т.д., надо ли обвинять Струкова во лжи?

    Или другой пример. Монетка, которую используют как жребий, должна быть «симметричной», т.е. при ее бросании в среднем в половине случаев должен выпадать герб, а в половине случаев – решетка (решка, цифра). Но что означает «в среднем»? Если провести много серий по 10 бросаний в каждой серии, то часто будут встречаться серии, в которых монетка 4 раза выпадает гербом. Для симметричной монеты это будет происходить в 20,5% серий. А если на 100000 бросаний окажется 40000 гербов, то можно ли считать монету симметричной? Процедура принятия решений строится на основе теории вероятностей и математической статистики.

    Рассматриваемый пример может показаться недостаточно серьезным. Однако это не так. Жеребьевка широко используется при организации промышленных технико-экономических экспериментов, например, при обработке результатов измерения показателя качества (момента трения) подшипников в зависимости от различных технологических факторов (влияния консервационной среды, методов подготовки подшипников перед измерением, влияния нагрузки подшипников в процессе измерения и т.п.). Допустим, необходимо сравнить качество подшипников в зависимости от результатов хранения их в разных консервационных маслах, т.е. в маслах состава А и В . При планировании такого эксперимента возникает вопрос, какие подшипники следует поместить в масло состава А , а какие – в масло состава В , но так, чтобы избежать субъективизма и обеспечить объективность принимаемого решения.

    Ответ на этот вопрос может быть получен с помощью жребия. Аналогичный пример можно привести и с контролем качества любой продукции. Чтобы решить, соответствует или не соответствует контролируемая партия продукции установленным требованиям, из нее отбирается выборка. По результатам контроля выборки делается заключение о всей партии. В этом случае очень важно избежать субъективизма при формировании выборки, т.е необходимо, чтобы каждая единица продукции в контролируемой партии имела одинаковую вероятность быть отобранной в выборку. В производственных условиях отбор единиц продукции в выборку обычно осуществляют не с помощью жребия, а по специальным таблицам случайных чисел или с помощью компьютерных датчиков случайных чисел.

    Аналогичные проблемы обеспечения объективности сравнения возникают при сопоставлении различных схем организации производства, оплаты труда, при проведении тендеров и конкурсов, подбора кандидатов на вакантные должности и т.п. Всюду нужна жеребьевка или подобные ей процедуры. Поясним на примере выявления наиболее сильной и второй по силе команды при организации турнира по олимпийской системе (проигравший выбывает). Пусть всегда более сильная команда побеждает более слабую. Ясно, что самая сильная команда однозначно станет чемпионом. Вторая по силе команда выйдет в финал тогда и только тогда, когда до финала у нее не будет игр с будущим чемпионом. Если такая игра будет запланирована, то вторая по силе команда в финал не попадет. Тот, кто планирует турнир, может либо досрочно «выбить» вторую по силе команду из турнира, сведя ее в первой же встрече с лидером, либо обеспечить ей второе место, обеспечив встречи с более слабыми командами вплоть до финала. Чтобы избежать субъективизма, проводят жеребьевку. Для турнира из 8 команд вероятность того, что в финале встретятся две самые сильные команды, равна 4/7. Соответственно с вероятностью 3/7 вторая по силе команда покинет турнир досрочно.

    При любом измерении единиц продукции (с помощью штангенциркуля, микрометра, амперметра и т.п.) имеются погрешности. Чтобы выяснить, есть ли систематические погрешности, необходимо сделать многократные измерения единицы продукции, характеристики которой известны (например, стандартного образца). При этом следует помнить, что кроме систематической погрешности присутствует и случайная погрешность.

    Поэтому встает вопрос, как по результатам измерений узнать, есть л систематическая погрешность. Если отмечать только, является ли полученная при очередном измерении погрешность положительной или отрицательной, то эту задачу можно свести к предыдущей. Действительно, сопоставим измерение с бросанием монеты, положительную погрешность – с выпадением герба, отрицательную – решетки (нулевая погрешность при достаточном числе делений шкалы практически никогда не встречается). Тогда проверка отсутствия систематической погрешности эквивалентна проверке симметричности монеты.

    Целью этих рассуждений является сведение задачи проверки отсутствия систематической погрешности к задаче проверки симметричности монеты. Проведенные рассуждения приводят к так называемому «критерию знаков» в математической статистике.

    При статистическом регулировании технологических процессов на основе методов математической статистики разрабатываются правила и планы статистического контроля процессов, направленные на своевременное обнаружение разладки технологических процессов и принятия мер к их наладке и предотвращению выпуска продукции, не соответствующей установленным требованиям. Эти меры нацелены на сокращение издержек производства и потерь от поставки некачественных единиц продукции. При статистическом приемочном контроле на основе методов математической статистики разрабатываются планы контроля качества путем анализа выборок из партий продукции. Сложность заключается в том, чтобы уметь правильно строить вероятностно-статистические модели принятия решений, на основе которых можно ответить на поставленные выше вопросы. В математической статистике для этого разработаны вероятностные модели и методы проверки гипотез, в частности, гипотез о том, что доля дефектных единиц продукции равна определенному числу р 0 , например, р 0 = 0,23 (вспомните слова Струкова из романа А.Н.Толстого).

    Задачи оценивания. В ряде управленческих, производственных, экономических, народнохозяйственных ситуаций возникают задачи другого типа – задачи оценки характеристик и параметров распределений вероятностей.

    Рассмотрим пример. Пусть на контроль поступила партия из N электроламп. Из этой партии случайным образом отобрана выборка объемом n электроламп. Возникает ряд естественных вопросов. Как по результатам испытаний элементов выборки определить средний срок службы электроламп и с какой точностью можно оценить эту характеристику? Как изменится точность, если взять выборку большего объема? При каком числе часов Т можно гарантировать, что не менее 90% электроламп прослужат Т и более часов?

    Предположим, что при испытании выборки объемом n электроламп дефектными оказались Х электроламп. Тогда возникают следующие вопросы. Какие границы можно указать для числа D дефектных электроламп в партии, для уровня дефектности D / N и т.п.?

    Или при статистическом анализе точности и стабильности технологических процессов надлежит оценить такие показатели качества, как среднее значение контролируемого параметра и степень его разброса в рассматриваемом процессе. Согласно теории вероятностей в качестве среднего значения случайной величины целесообразно использовать ее математическое ожидание, а в качестве статистической характеристики разброса – дисперсию, среднее квадратическое отклонение или коэффициент вариации. Отсюда возникает вопрос: как оценить эти статистические характеристики по выборочным данным и с какой точностью это удается сделать? Аналогичных примеров можно привести очень много. Здесь важно было показать, как теория вероятностей и математическая статистика могут быть использованы в производственном менеджменте при принятии решений в области статистического управления качеством продукции.

    Что такое «математическая статистика»? Под математической статистикой понимают «раздел математики, посвященный математическим методам сбора, систематизации, обработки и интерпретации статистических данных, а также использование их для научных или практических выводов. Правила и процедуры математической статистики опираются на теорию вероятностей, позволяющую оценить точность и надежность выводов, получаемых в каждой задаче на основании имеющегося статистического материала» . При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми или иными признаками.

    По типу решаемых задач математическая статистика обычно делится на три раздела: описание данных, оценивание и проверка гипотез.

    По виду обрабатываемых статистических данных математическая статистика делится на четыре направления:

    Одномерная статистика (статистика случайных величин), в которой результат наблюдения описывается действительным числом;

    Многомерный статистический анализ, где результат наблюдения над объектом описывается несколькими числами (вектором);

    Статистика случайных процессов и временных рядов, где результат наблюдения – функция;

    Статистика объектов нечисловой природы, в которой результат наблюдения имеет нечисловую природу, например, является множеством (геометрической фигурой), упорядочением или получен в результате измерения по качественному признаку.

    Исторически первой появились некоторые области статистики объектов нечисловой природы (в частности, задачи оценивания доли брака и проверки гипотез о ней) и одномерная статистика. Математический аппарат для них проще, поэтому на их примере обычно демонстрируют основные идеи математической статистики.

    Лишь те методы обработки данных, т.е. математической статистики, являются доказательными, которые опираются на вероятностные модели соответствующих реальных явлений и процессов. Речь идет о моделях поведения потребителей, возникновения рисков, функционирования технологического оборудования, получения результатов эксперимента, течения заболевания и т.п. Вероятностную модель реального явления следует считать построенной, если рассматриваемые величины и связи между ними выражены в терминах теории вероятностей. Соответствие вероятностной модели реальности, т.е. ее адекватность, обосновывают, в частности, с помощью статистических методов проверки гипотез.

    Невероятностные методы обработки данных являются поисковыми, их можно использовать лишь при предварительном анализе данных, так как они не дают возможности оценить точность и надежность выводов, полученных на основании ограниченного статистического материала.

    Вероятностные и статистические методы применимы всюду, где удается построить и обосновать вероятностную модель явления или процесса. Их применение обязательно, когда сделанные на основе выборочных данных выводы переносятся на всю совокупность (например, с выборки на всю партию продукции).

    В конкретных областях применений используются как вероятностно-статистические методы широкого применения, так и специфические. Например, в разделе производственного менеджмента, посвященного статистическим методам управления качеством продукции, используют прикладную математическую статистику (включая планирование экспериментов). С помощью ее методов проводится статистический анализ точности и стабильности технологических процессов и статистическая оценка качества. К специфическим методам относятся методы статистического приемочного контроля качества продукции, статистического регулирования технологических процессов, оценки и контроля надежности и др.

    Широко применяются такие прикладные вероятностно-статистические дисциплины, как теория надежности и теория массового обслуживания. Содержание первой из них ясно из названия, вторая занимается изучением систем типа телефонной станции, на которую в случайные моменты времени поступают вызовы - требования абонентов, набирающих номера на своих телефонных аппаратах. Длительность обслуживания этих требований, т.е. длительность разговоров, также моделируется случайными величинами. Большой вклад в развитие этих дисциплин внесли член-корреспондент АН СССР А.Я. Хинчин (1894-1959), академик АН УССР Б.В.Гнеденко (1912-1995) и другие отечественные ученые.

    Коротко об истории математической статистики. Математическая статистика как наука начинается с работ знаменитого немецкого математика Карла Фридриха Гаусса (1777-1855), который на основе теории вероятностей исследовал и обосновал метод наименьших квадратов, созданный им в 1795 г. и примененный для обработки астрономических данных (с целью уточнения орбиты малой планеты Церера). Его именем часто называют одно из наиболее популярных распределений вероятностей – нормальное, а в теории случайных процессов основной объект изучения – гауссовские процессы.

    В конце XIX в. – начале ХХ в. крупный вклад в математическую статистику внесли английские исследователи, прежде всего К.Пирсон (1857-1936) и Р.А.Фишер (1890-1962). В частности, Пирсон разработал критерий «хи-квадрат» проверки статистических гипотез, а Фишер – дисперсионный анализ, теорию планирования эксперимента, метод максимального правдоподобия оценки параметров.

    В 30-е годы ХХ в. поляк Ежи Нейман (1894-1977) и англичанин Э.Пирсон развили общую теорию проверки статистических гипотез, а советские математики академик А.Н. Колмогоров (1903-1987) и член-корреспондент АН СССР Н.В.Смирнов (1900-1966) заложили основы непараметрической статистики. В сороковые годы ХХ в. румын А. Вальд (1902-1950) построил теорию последовательного статистического анализа.

    Математическая статистика бурно развивается и в настоящее время. Так, за последние 40 лет можно выделить четыре принципиально новых направления исследований :

    Разработка и внедрение математических методов планирования экспериментов;

    Развитие статистики объектов нечисловой природы как самостоятельного направления в прикладной математической статистике;

    Развитие статистических методов, устойчивых по отношению к малым отклонениям от используемой вероятностной модели;

    Широкое развертывание работ по созданию компьютерных пакетов программ, предназначенных для проведения статистического анализа данных.

    Вероятностно-статистические методы и оптимизация. Идея оптимизации пронизывает современную прикладную математическую статистику и иные статистические методы. А именно, методы планирования экспериментов, статистического приемочного контроля, статистического регулирования технологических процессов и др. С другой стороны, оптимизационные постановки в теории принятия решений, например, прикладная теория оптимизации качества продукции и требований стандартов, предусматривают широкое использование вероятностно-статистических методов, прежде всего прикладной математической статистики.

    В производственном менеджменте, в частности, при оптимизации качества продукции и требований стандартов особенно важно применять статистические методы на начальном этапе жизненного цикла продукции, т.е. на этапе научно-исследовательской подготовки опытно-конструкторских разработок (разработка перспективных требований к продукции, аванпроекта, технического задания на опытно-конструкторскую разработку). Это объясняется ограниченностью информации, доступной на начальном этапе жизненного цикла продукции, и необходимостью прогнозирования технических возможностей и экономической ситуации на будущее. Статистические методы должны применяться на всех этапах решения задачи оптимизации – при шкалировании переменных, разработке математических моделей функционирования изделий и систем, проведении технических и экономических экспериментов и т.д.

    В задачах оптимизации, в том числе оптимизации качества продукции и требований стандартов, используют все области статистики. А именно, статистику случайных величин, многомерный статистический анализ, статистику случайных процессов и временных рядов, статистику объектов нечисловой природы. Выбор статистического метода для анализа конкретных данных целесообразно проводить согласно рекомендациям .

    Предыдущая

    Как подходы, идеи и результаты теории вероятностей и математической статистики используются при принятии решений?

    Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются прежде всего для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду как нежелательные возможности (риски), так и привлекательные («счастливый случай»). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

    Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя. Например, по вероятности выпадения герба можно рассчитать вероятность того, что при 10 бросаниях монет выпадет не менее 3 гербов. Подобный расчет опирается на вероятностную модель, согласно которой бросания монет описываются схемой независимых испытаний, кроме того, выпадения герба и решетки равновозможны, а потому вероятность каждого из этих событий равна Ѕ. Более сложной является модель, в которой вместо бросания монеты рассматривается проверка качества единицы продукции. Соответствующая вероятностная модель опирается на предположение о том, что контроль качества различных единиц продукции описывается схемой независимых испытаний. В отличие от модели с бросанием монет необходимо ввести новый параметр - вероятность р того, что единица продукции является дефектной. Модель будет полностью описана, если принять, что все единицы продукции имеют одинаковую вероятность оказаться дефектными. Если последнее предположение неверно, то число параметров модели возрастает. Например, можно принять, что каждая единица продукции имеет свою вероятность оказаться дефектной.

    Обсудим модель контроля качества с общей для всех единиц продукции вероятностью дефектности р. Чтобы при анализе модели «дойти до числа», необходимо заменить р на некоторое конкретное значение. Для этого необходимо выйти из рамок вероятностной модели и обратиться к данным, полученным при контроле качества.

    Математическая статистика решает обратную задачу по отношению к теории вероятностей. Ее цель - на основе результатов наблюдений (измерений, анализов, испытаний, опытов) получить выводы о вероятностях, лежащих в основе вероятностной модели. Например, на основе частоты появления дефектных изделий при контроле можно сделать выводы о вероятности дефектности (см. теорему Бернулли выше).

    На основе неравенства Чебышева делались выводы о соответствии частоты появления дефектных изделий гипотезе о том, что вероятность дефектности принимает определенное значение.

    Таким образом, применение математической статистики опирается на вероятностную модель явления или процесса. Используются два параллельных ряда понятий - относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, «находятся в головах исследователей», относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

    Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин «генеральная совокупность» используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

    Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

    Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют «анализ данных». По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

    Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик - вот суть вероятностно-статистических методов принятия решений.

    Подчеркнем, что логика использования выборочных характеристик для принятия решений на основе теоретических моделей предполагает одновременное использование двух параллельных рядов понятий, один из которых соответствует вероятностным моделям, а второй - выборочным данным. К сожалению, в ряде литературных источников, обычно устаревших либо написанных в рецептурном духе, не делается различия между выборочными и теоретическими характеристиками, что приводит читателей к недоумениям и ошибкам при практическом использовании статистических методов.

    Аналитические методы основаны на работе руководителя с рядом аналитических зависимостей. Которые определяют соотношение между условиями выполняемой задачи и её результатом в виде формул, графиков и т.д.

    Статистические методы, основаны на использовании информации о прошлом удачном опыте при разработке принятии УР. Эти методы реализуются путем сбора, обработки, анализа статистических материалов с помощью статического моделирования. Такие методы можно использовать как на этапе разработки так и на этапе выбора решения.

    Математические методы, они позволяют рассчитать лучший вариант решения по оптимальным критериям. Для этого в комп вводится искомая ситуация, вводится цель и критерии. Компьютер на базе математического соотношения либо разрабатывает новое, либо подбирает подходящее.

    18 Активизирующие методы принятия управленческих решений

    "Мозговой штурм"- это метод группового обсуждения проблемы, основанный на неаналитическом мышлении.

    1)Этап генерации идей отделяется от этапа критики;

    2)На этапе генерации идей запрещена любая критика принимаются абсурдные идеи.

    3) Все идеи фиксируются письменно;

    4) На этом этапе критики отбирают 3-4 идеи которые могут рассматриваться как альтернативные варианты.

    Метод "Вопросов и ответов" он основан на предварительном составлении набора вопросов, ответы на которые могут сформировать новый подход к решению проблемы.

    Метод "5 почему"

    Пять "почему?" – эффективный инструмент, использующий вопросы для изучения причинно-следственных связей, лежащих в основе конкретной проблемы, определения причинных факторов и выявления первопричины. Рассматривая логику в направлении "Почему?", мы постепенно раскрываем всю цепь последовательно связанных между собой причинных факторов, оказывающих влияние на проблему.

    План действий

    Определить конкретную проблему, которую необходимо решить.

    Прийти к согласию относительно формулировки рассматриваемой проблемы.

    При поиске решения проблемы следует начинать с конечного результата (проблемы) и идти в обратном направлении (в направлении возникновения первопричины), спрашивая, почему возникает проблема.

    Ответ записать под проблемой.

    Если ответ не выявляет первопричину проблемы, снова задать вопрос "Почему?" и новый ответ записать ниже.

    Вопрос "Почему?" необходимо повторять до тех пор, пока первопричина проблемы не станет очевидной.

    Если ответ решает проблему, и группа согласна с ним, принимается решение, использующее ответ.

    "Теоретико-игровой метод" основан на создании человеко-машинной системы разработки решений. Предшественником были традиционные совещания. Обычно на таких совещаниях принимались эконом, социал. И специализированные решения. Интересы участников часто различны, а круг вопросов имеет широкий спектр. Качественным развитии методики совещаний стало внедрении процесса разработки УР, искусственного интеллекта в виде компьютерной модели.

    Компьютерная модель организации включает:

    1) Справочные данные (о поставщиках, потребителях);

    2) Имитационные модели компании

    3) Методики экономического расчета и прогнозирования

    4) Информацию о решениях в аналогичных ситуациях.

    В результате совещания более результативны. Такое совещание может в нескольких сеансах игры: где на 1 сеансе все участники вводят свои требования, после обработки комп. Выдает определенное решение которые могут обсуждаться и корректироваться еще раз. Это может длиться до выработки общего решения либо, до отказа о принятии данного решения.

    Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности. Разъяснить процесс принятия решения в различных ситуациях. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода Рассматриваемые методы относятся к статистическим....


    Поделитесь работой в социальных сетях

    Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


    Лекция 7

    Тема. МЕТОДЫ СТАТИСТИЧЕСКИХ РЕШЕНИЙ

    Цель. Дать понятие о статистических решениях для одного диагностического параметра и для принятия решения при наличии зоны неопределенности.

    Учебная. Разъяснить процесс принятия решения в различных ситуациях.

    Развивающая. Развивать логическое мышление и естественное - научное мировоззрение.

    Воспитательная . Воспитывать интерес к научным достижениям и открытиям в отрасли телекоммуникации.

    Межпредметные связи:

    Обеспечивающие: информатика, математика, вычислительная техника и МП , системы программирования.

    Обеспечиваемые: Стажерская практика

    Методическое обеспечение и оборудование:

    Методическая разработка к занятию.

    Учебный план.

    Учебная программа

    Рабочая программа.

    Инструктаж по технике безопасности.

    Технические средства обучения: персональный компьютер.

    Обеспечение рабочих мест:

    Рабочие тетради

    Ход лекции.

    Организационный момент.

    Анализ и проверка домашней работы

    Ответьте на вопросы:

    1. Что позволяет определить формула Байеса?
    2. В чем состоят основы метода Байеса? Приведите формулу. Дайте определение точного смысла всех входящих в эту формулу величин.
    3. Что означает, что реализация некоторого комплекса признаков K * является детерминирующей?
    4. Объясните принцип формирования диагностической матрицы.
    5. Что означает решающее правило принятия?
    6. Дайте определение методу последовательного анализа.
    7. В чем состоит связь границ принятия решения с вероятностями ошибок первого и второго рода?

    План лекции

    Рассматриваемые методы относятся к статистическим. В методах статистических решений решающее правило выбирается исходя из некоторых условий оптимальности, например из условия минимума риска. Возникшие в математической статистике как методы проверки статистических гипотез (работы Неймана и Пирсона), рассматриваемые методы нашли широкое применение в радиолокации (обнаружение сигналов на фоне помех), радиотехнике, общей теории связи и других областях. Методы статистических решений успешно используются в задачах технической диагностики.

    СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ДЛЯ ОДНОГО ДИАГНОСТИЧЕСКОГО ПАРАМЕТРА

    Если состояние системы характеризуется одним параметром, то система имеет одномерное пространство признаков. Разделение производится на два класса (дифференциальная диагностика или дихотомия (раздвоенность, последовательное деление на две части, не связанные между собой. ) ).

    Рис.1 Статистические распределения плотности вероятности диагностического параметра х для исправного D 1 и дефектного D 2 состояний

    Существенно, что области исправного D 1 и дефектного D 2 состояний пересекаются и потому принципиально невозможно выбрать значение х 0 , при котором не было бы ошибочных решений. Задача состоит в том, чтобы выбор х 0 был в некотором смысле оптимальным, например давал наименьшее число ошибочных решений.

    Ложная тревога и пропуск цели (дефекта). Эти встречавшиеся ранее термины явно связаны с радиолокационной техникой, но они легко интерпретируются в задачах диагностики.

    Ложной тревогой называется случай, когда принимается решение о наличии дефекта, но в действительности система находится в исправном состоянии (вместо D 1 принимается D 2 ).

    Пропуск цели (дефекта) — принятие решения об исправном состоянии, тогда как система содержит дефект (вместо D 2 принимается D 1 ).

    В теории контроля эти ошибки называются риском поставщика и риском заказчика . Очевидно, что эти двоякого рода ошибки могут иметь различные последствия или различные целы.

    Вероятность ложной тревоги равна вероятности произведения двух событий: наличие исправного состояния и значения х > х 0 .

    Средний риск. Вероятность принятия ошибочного решения слагается из вероятностей ложной тревоги и пропуска дефекта (математическое ожидание) риска.

    Разумеется, цена ошибки имеет условное значение, но она должна учесть предполагаемые последствия ложной тревоги и пропуска дефекта. В задачах надежности стоимость пропуска дефекта обычно существенно больше стоимости ложной тревоги.

    Метод минимального риска . Вероятность принятия ошибочного решения определяется как минимизация точки экстремума среднего риска ошибочных решений при максимуме правдоподобия т.е. проводится расчет минимального риска происхождения события при налички информации о максимально подобных событиях.

    рис. 2. Точки экстремума среднего риска ошибочных решений

    Рис. 3. Точки экстремума для двугорбых распределений

    Отношение плотностей вероятностей распределения х при двух состояниях называется отношением правдоподобия.

    Напомним, что диагноз D 1 соответствует исправному состоянию, D 2 — дефектному состоянию объекта; С 21 — цена ложной тревоги, С 12 — цена пропуска цели (первые индекс — принятое состояние, второй — действительное); С 11 < 0, С 22 < 0 — цены правильных решений (условные выигрыши). В большинстве практических задач условные выигрыши (поощрения) для правильных решений не вводятся.

    Часто оказывается удобным рассматривать не отношение правдоподобия, а логарифм этого отношения. Это не изменяет результата, так как логарифмическая функция возрастает монотонно вместе со своим аргументом. Расчет для нормального и некоторых других распределений при использовании логарифма отношения правдоподобия оказывается несколько проще. Условие минимума риска можно получить из других соображений, которые окажутся важными в дальнейшем.

    Метод минимального числа ошибочных решений .

    Вероятность ошибочного решения для решающего правила

    В задачах надежности рассматриваемый метод часто дает «неосторожные решения», так как последствия ошибочных решений существенно различаются между собой. Обычно цена пропуска дефекта существенно выше цены ложной тревоги. Если указанные стоимости приблизительно одинаковы (для дефектов с ограниченными последствиями, для некоторых задач контроля и др.) то применение метода вполне оправдано.

    Метод минимакса предназначен для ситуации, когда отсутствуют предварительные статистические сведения о вероятности диагнозов D 1 и D 2 . Рассматривается «наихудший случай», т. е. наименее благоприятные значения Р 1 и Р 2 , приводящие к наибольшему значению (максимуму) риска.

    Можно показать для одномодальных распределений, что величина риска становится минимаксной (т. е. минимальной среди максимальных значений, вызванных «неблагоприятной» величиной Pi ). Отметим, что при Р 1 = 0 и Р 1 = 1 риск принятия ошибочного решения отсутствует, так как ситуация не имеет неопределенности. При Р 1 = 0 (все изделия неисправны) вытекает х 0 → -оо и все объекты действительно признаются неисправными; при Р 1 = 1 и Р 2 = 0 х 0 → +оо и в соответствии с имеющейся ситуацией все объекты классифицируются как исправные.

    Для промежуточных значений 0 < Pi < 1 риск возрастает и при P 1= P 1* становится максимальным. Рассматриваемым методом выбирают величину х 0 таким образом, чтобы при наименее благоприятных значениях Pi потери, связанные с ошибочными решениями, были бы минимальными.

    рис . 4. Определение граничного значения диагностического параметра по методу минимакса

    Метод Неймана—Пирсона . Как уже указывалось, оценки стоимости ошибок часто неизвестны и их достоверное определение связано с большими трудностями. Вместе с тем ясно, что во всех с л у чаях желательно при определенном (допустимом) уровне одной из ошибок минимизировать значение другой. Здесь центр проблемы переносится на обоснованный выбор допустимого уровня ошибок с помощью предыдущего опыта или интуитивных соображений.

    По методу Неймана—Пирсона минимизируется вероятность пропуска цели при заданном допустимом уровне вероятности ложной тревоги. Таким образом, вероятность ложной тревоги

    где А — заданный допустимый уровень вероятности ложной тревоги; Р 1 — вероятность исправного состояния.

    Отметим, что обычно это условие относят к условной вероятности ложной тревоги (множитель Р 1 отсутствует). В задачах технической диагностики значения Р 1 и Р 2 в большинстве случаев известны по статистическим данным.

    Таблица 1 Пример - Результаты расчета по методам статистических решений

    № п/п

    Метод

    Граничное значение

    Вероятность ложной тревоги

    Вероятность пропуска дефекта

    Средний риск

    Метод минимального риска

    7,46

    0,0984

    0,0065

    0,229

    Метод минимального числа ошибок

    9,79

    0,0074

    0,0229

    0,467

    Метод минимакса

    Основной вариант

    5,71

    0,3235

    0,0018

    0,360

    2 вариант

    7,80

    0,0727

    0,0081

    0,234

    Метод Неймана—Пирсона

    7,44

    0,1000

    0,0064

    0,230

    Метод наибольшего правдоподобия

    8,14

    0,0524

    0,0098

    0,249

    Из сопоставления видно, что метод минимального числа ошибок дает неприемлемое решение, так как цены ошибок существенно различны. Граничное значение по этому методу приводит к значительной вероятности пропуска дефекта. Метод минимакса в основном варианте требует очень большого снятия с эксплуатации исследуемых устройств(примерно 32%), так как исходит из наименее благоприятного случая (вероятность неисправного состояния Р 2 = 0,39). Применение метода может быть оправданным, если отсутствуют даже косвенные оценки вероятности неисправного состояния. В рассматриваемом примере удовлетворительные результаты получаются по методу минимального риска.

    1. СТАТИСТИЧЕСКИЕ РЕШЕНИЯ ПРИ НАЛИЧИИ ЗОНЫ НЕОПРЕДЕЛЕННОСТИ И ДРУГИЕ ОБОБЩЕНИЯ

    Правило решения при наличии зоны неопределенности.

    В некоторых случаях, когда требуется высокая надежность распознавания (большая стоимость ошибок пропуска цели и ложной тревоги), целесообразно ввести зону неопределенности (зону отказа от распознавания). Правило решения будет следующим

    при отказ от распознавания.

    Разумеется, отказ от распознавания является нежелательным событием. Он свидетельствует, что имеющейся информации недостаточно для принятия решения и нужны дополнительные сведения.

    рис. 5. Статистические решения при наличии зоны неопределенности

    Определение среднего риска . Величина среднего риска при наличии зоны отказа от распознавания может быть выражена следующим равенством

    где C o — цена отказа от распознавания.

    Отметим, что С о > 0, иначе задача теряет смысл («вознаграждение» за отказ от распознавания). Точно так же С 11 < 0, С 22 < 0, так как правильные решения не должны «штрафоваться».

    Метод минимального риска при наличии зоны неопределенности . Определим границы области принятия решения, исходя из минимума среднего риска.

    Если не поощрять правильные решения (С 11 = 0, С 22 = 0) и не платить за отказ от распознавания (С 0 = 0), то область неопределенности будет занимать всю область изменения параметра.

    Наличие зоны неопределенности дает возможность обеспечить заданные уровни ошибок за счет отказа от распознавания в «сомнительных» случаях

    Статистические решения для нескольких состояний. Выше были рассмотрены случаи, когда статистические решения принимались д ля различения двух состояний (дихотомия). Принципиально такая процедура позволяет провести разделение на n состояний, каждый раз объединяя результаты для состояния D 1 и D 2 . Здесь под D 1 понимаются любые состояния, соответствующие условию «не D 2 ». Однако в некоторых случаях представляет интерес рассмотреть вопрос и в прямой постановке — статистические решения для классификации n состояний.

    Выше рассматривались случаи, когда состояние системы (изделия) характеризовалось одним параметром х и соответствующим (одномерным) распределением. Состояние системы характеризуется диагностическими параметрами х 1 х 2 , ..., х n или вектором х:

    х= (х 1 х 2 ,...,х n ).

    М етод минимального риска.

    Наиболее просто обобщаются на многомерные системы методы минимального риска и его частные случаи (метод минимального числа ошибочных решений, метод наибольшего правдоподобия). В случаях, когда в методе статистического решения требуется определение границ области принятия решения, расчетная сторона задачи существенно осложняется (методы Неймана—Пирсона и минимакса).

    Домашнее задание: § конспект.

    Закрепление материала:

    Ответьте на вопросы:

    1. Что называют ложной тревогой?
    2. Что подразумевает пропуск цели (дефекта)?
    3. Дайте объяснение риску поставщика и риску заказчика.
    4. Приведите формулу метода минимального числа ошибочных решений. Дайте определение неосторожного решения.
    5. Для каких случаев предназначен метод минимакса?
    6. Метод Неймана—Пирсона. Объясните его принцип.
    7. Для каких целей применяется зона неопределенности?

    Литература:

    Амренов С. А. «Методы контроля и диагностики систем и сетей связи» КОНСПЕКТ ЛЕКЦИЙ -: Астана, Казахский государственный агротехнический университет, 2005 г.

    И.Г. Бакланов Тестирование и диагностика систем связи. - М.: Эко-Трендз, 2001.

    Биргер И. А. Техническая диагностика.— М.: «Машиностроение», 1978.—240,с, ил.

    АРИПОВ М.Н, ДЖУРАЕВ Р.Х., ДЖАББАРОВ Ш.Ю. «ТЕХНИЧЕСКАЯ ДИАГНОСТИКА ЦИФРОВЫХ СИСТЕМ» -Ташкент, ТЭИС, 2005

    Платонов Ю. М., Уткин Ю. Г. Диагностика, ремонт и профилактика персональных компьютеров. -М.: Горячая линия - Телеком, 2003.-312 с: ил.

    М.Е.Бушуева, В.В.Беляков Диагностика сложных технических систем Труды 1-го совещания по проекту НАТО SfP-973799 Semiconductors . Нижний Новгород, 2001

    Малышенко Ю.В. ТЕХНИЧЕСКАЯ ДИАГНОСТИКА часть I конспект лекций

    Платонов Ю. М., Уткин Ю. Г. Диагностика зависания и неисправностей компьютера/Серия «Техномир». Ростов-на-Дону: «Феникс», 2001. — 320 с.

    PAGE \* MERGEFORMAT 2

    Другие похожие работы, которые могут вас заинтересовать.вшм>

    21092. Экономические методы принятия предпринимательских решений на примере ТОО «Норма- 2005» 127.94 KB
    Управленческие решения: сущность требования механизм разработки. Свою управленческую деятельность руководитель реализует через решения. Достижение поставленной цели исследования потребовало решения следующих задач: теоретического обоснования экономических методов принятия решений в системе предпринимательства; структуризации и внутреннего управленческого обследования на основе анализа внешней и внутренней среды исследуемого предприятия; анализа использования информации экономических результатов...
    15259. Методы, применяемые в анализе синтетических аналогов папаверина и многокомпонентных лекарственных форм на их основе 3.1. Хроматографические методы 3.2. Электрохимические методы 3.3. Фотометрические методы Заключение Список л 233.66 KB
    Дротаверина гидрохлорид. Дротаверина гидрохлорид является синтетическим аналогом папаверина гидрохлорида а с точки зрения химического строения является производным бензилизохинолина. Дротаверина гидрохлорид принадлежит к группе лекарственных средств обладающих спазмолитической активностью спазмолитик миотропного действия и является основным действующим веществом препарата но-шпа. Дротаверина гидрохлорид Фармакопейная статья на дротаверина гидрохлорид представлена в Фармакопее издания.
    2611. ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТИЗ 128.56 KB
    Например гипотеза простая; а гипотеза: где –сложная гипотеза потому что она состоит из бесконечного множества простых гипотез. Классический метод проверки гипотез В соответствии с поставленной задачей и на основании выборочных данных формулируется выдвигается гипотеза которая называется основной или нулевой. Одновременно с выдвинутой гипотезой рассматривается противоположная ей гипотеза которая называется конкурирующей или альтернативной. Поскольку гипотеза для генеральной совокупности...
    7827. Тестирование статистических гипотез 14.29 KB
    Для тестирования гипотезы существует два способа сбора данных – наблюдение и эксперимент. Думаю определить какое из данных наблюдений является научным не составит труда. Шаг третий: сохранение результатов Как я уже упоминала в лекции первой один из языков на которых говорит биология – это язык баз данных. Из этого вытекает то какой собственно база данных должна быть и какой задаче она отвечает.
    5969. Статистическое исследование и обработка статистических данных 766.04 KB
    В курсовой рассматривается следующие темы: статистическое наблюдение, статистическая сводка и группировка, формы выражения статистических показателей, выборочное наблюдение, статистическое изучение взаимосвязи социально-экономических явлений и динамики социально-экономических явлений, экономические индексы.
    19036. 2.03 MB
    13116. Система сбора и обработки статистических данных «Метеонаблюдения» 2.04 MB
    Работы с базами данных и СУБД позволяют значительно качественнее организовать работу сотрудников. Простота в эксплуатации и надежность хранения данных позволяют практически совсем отказаться от ведения бумажного учета. Значительно ускоряется работа с отчетной и статистической информацией калькуляцией данных.
    2175. Анализ области решений 317.39 KB
    9й вид UML диаграмм диаграммы вариантов использования см. В этом курсе мы не будем разбирать диаграммы UML в деталях а ограничимся обзором их основных элементов необходимым для общего понимания смысла того что изображено на таких диаграммах. Диаграммы UML делятся на две группы статические и динамические диаграммы. Статические диаграммы Статические диаграммы представляют либо постоянно присутствующие в системе сущности и связи между ними либо суммарную информацию о сущностях и связях либо сущности и связи существующие в какойто...
    1828. Критерий принятия решений 116.95 KB
    Критерий принятия решений – это функция, выражающая предпочтения лица, принимающего решения (ЛПР), и определяющая правило, по которому выбирается приемлемый или оптимальный вариант решения.
    10569. Классификация управленческих решений 266.22 KB
    Классификация управленческих решений. Разработка управленческого решения. Особенности управленческих решений Обыденные и управленческие решения. Обыденные решения это решения принимаемые людьми в повседневной жизни.

    МЕТОДЫ ПРИНЯТИЯ УПРАВЛЕНЧЕСКИХ РЕШЕНИЙ

    Направления подготовки

    080200.62 «Менеджмент»

    является единой для всех форм обучения

    Квалификация (степень) выпускника

    Бакалавр

    Челябинск


    Методы принятия управленческих решений: Рабочая программа учебной дисциплины (модуля) / Ю.В. Подповетная. – Челябинск: ЧОУ ВПО «Южно-Уральский институт управления и экономики», 2014. – 78 с.

    Методы принятия управленческих решений: Рабочая программа учебной дисциплины (модуля) по направлению 080200.62 «Менеджмент» является единой для всех форм обучения. Программа составлена в соответствии с требованиями ФГОС ВПО с учетом рекомендаций и ПрОПОП ВО по направлению и профилю подготовки.

    Программа одобрена на заседании Учебно-методического совета от 18.08.2014 года, протокол № 1.

    Программа утверждена на заседании ученого совета от 18.08.2014 года, протокол № 1.

    Рецензент : Лысенко Ю.В. – д.э.н., профессор, зав. Кафедрой «Экономика и управление на предприятии» Челябинского института (филиал) ФГБОУ ВПО «РЭУ им.Г.В. Плеханова»

    Красноярцева Е.Г.- директор ЧОУ «Центр делового образования Южно-Уральской ТПП»

    © Издательство ЧОУ ВПО «Южно-Уральского института управления и экономики», 2014


    I Введение……………………………………………………………………………...4

    II Тематическое планирование…………………………………………………….....8

    IV Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы студентов…………..…………………………………….38



    V Учебно-методическое и информационное обеспечение дисциплины …..........76

    VI Материально-техническое обеспечение дисциплины ………………………...78


    I ВВЕДЕНИЕ

    Рабочая программа учебной дисциплины (модуля) «Методы принятия управленческих решений» предназначена для реализации Федерального государственного стандарта Высшего профессионального образования по направлению 080200.62 «Менеджмент» и является единой для всех форм обучения.

    1 Цель и задачи дисциплины

    Целью изучения данной дисциплины является:

    Формирование теоретических знаний о математических, статистических и количественных методах разработки, принятия и реализации управленческих решений;

    Углубление знаний, используемых для исследования и анализа экономических объектов, выработки теоретически обоснованных экономических и управленческих решений;

    Углубление знаний в области теории и методов отыскания лучших вариантов решений, как в условиях определённости, так и в условиях неопределённости и риска;

    Формирование практических навыков эффективного применения методов и процедур выбора и принятия решений для выполнения экономического анализа, поиска лучшего решения поставленной задачи.

    2 Входные требования и место дисциплины в структуре ОПОП бакалавриата

    Дисциплина «Методы принятия управленческих решений» относится к базовой части математического и естественнонаучного цикла (Б2.Б3).

    Дисциплина опирается на знания, умения и компетенции студента, полученные при изучении следующих учебных дисциплин: «Математика», «Инновационный менеджмент».

    Полученные в процессе изучения дисциплины «Методы принятия управленческих решений» знания и умения могут быть использованы при изучении дисциплин базовой части профессионального цикла: «Маркетинговые исследования», «Методы и модели в экономике».

    3 Требования к результатам освоения дисциплины «Методы принятия управленческих решений»

    Процесс изучения дисциплины направлен на формирование следующих компетенций, представленных в таблице.

    Таблица - Структура компетенций, формируемых в результате изучения дисциплины

    Код компетенции Наименование компетенции Характеристика компетенции
    ОК-15 владеть методами количественного анализа и моделирования, теоретического и экспериментального исследования; знать/понимать: уметь: владеть:
    ОК-16 пониманием роли и значения информации и информационных технологий в развитии современного общества и экономических знаний; В результате студент должен: знать/понимать: - основные понятия и инструменты алгебры и геометрии, математического анализа, теории вероятностей, математической и социально-экономической статистики; - основные математические модели принятия решений; уметь: - решать типовые математические задачи, используемые при принятии управленческих решений; - использовать математический язык и математическую символику при построении организационно-управленческих моделей; - обрабатывать эмпирические и экспериментальные данные; владеть: математическими, статистическими и количественными методами решения типовых организационно-управленческих задач.
    ОК-17 владеть основными методами, способами и средствами получения, хранения, переработки информации, навыками работы с компьютером как средством управления информацией; В результате студент должен: знать/понимать: - основные понятия и инструменты алгебры и геометрии, математического анализа, теории вероятностей, математической и социально-экономической статистики; - основные математические модели принятия решений; уметь: - решать типовые математические задачи, используемые при принятии управленческих решений; - использовать математический язык и математическую символику при построении организационно-управленческих моделей; - обрабатывать эмпирические и экспериментальные данные; владеть: математическими, статистическими и количественными методами решения типовых организационно-управленческих задач.
    ОК-18 способностью работать с информацией в глобальных компьютерных сетях и корпоративных информационных системах. В результате студент должен: знать/понимать: - основные понятия и инструменты алгебры и геометрии, математического анализа, теории вероятностей, математической и социально-экономической статистики; - основные математические модели принятия решений; уметь: - решать типовые математические задачи, используемые при принятии управленческих решений; - использовать математический язык и математическую символику при построении организационно-управленческих моделей; - обрабатывать эмпирические и экспериментальные данные; владеть: математическими, статистическими и количественными методами решения типовых организационно-управленческих задач.

    В результате изучения дисциплины студент должен:

    знать/понимать:

    Основные понятия и инструменты алгебры и геометрии, математического анализа, теории вероятностей, математической и социально-экономической статистики;

    Основные математические модели принятия решений;

    уметь:

    Решать типовые математические задачи, используемые при принятии управленческих решений;

    Использовать математический язык и математическую символику при построении организационно-управленческих моделей;

    Обрабатывать эмпирические и экспериментальные данные;

    владеть:

    Математическими, статистическими и количественными методами решения типовых организационно-управленческих задач.


    II ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

    НАБОР 2011г.

    НАПРАВЛЕНИЕ: «Менеджмент»

    СРОК ОБУЧЕНИЯ: 4 года

    ФОРМА ОБУЧЕНИЯ: очная

    Лекции, час. Практические занятия, час. Лабораторные занятия, час. Семинарские Курсовая работа, час. Всего, час.
    Тема 4.4 Экспертные оценки
    Тема 5.2Игровые модели ПР
    Тема 5.3 Позиционные игры
    Экзамен
    ВСЕГО

    Лабораторный практикум

    № п/п Трудоемкость (час.)
    Тема 1.3 Целевая ориентация управленческих решений Лабораторная работа № 1. Поиск оптимальных решений. Применение оптимизации в системах поддержки ПР
    Тема 2.2 Основные виды моделей теории принятия решений
    Тема 3.3 Особенности измерения предпочтений
    Тема 4.2 Метод парных сравнений
    Тема 4.4 Экспертные оценки
    Тема 5.2Игровые модели ПР
    Тема 5.4 Оптимальность в форме равновесия
    Тема 6.3 Статистические игры с проведением единичного эксперимента

    Набор 2011 г.

    НАПРАВЛЕНИЕ: «Менеджмент»

    ФОРМА ОБУЧЕНИЯ: заочная

    1 Объем дисциплины и виды учебной работы

    2 Разделы и темы дисциплины и виды занятий

    Наименование разделов и тем дисциплины Лекции, час. Практические занятия, час. Лабораторные занятия, час. Семинарские Самостоятельная работа, час. Курсовая работа, час. Всего, час.
    Раздел 1 Менеджмент как процесс принятия управленческих решений
    Тема 1.1 Функции и свойства управленческих решений
    Тема 1.2 Процесс принятия управленческих решений
    Тема 1.3 Целевая ориентация управленческих решений
    Раздел 2 Модели и моделирование в теории принятия решений
    Тема 2.1 Моделирование и анализ альтернатив действий
    Тема 2.2 Основные виды моделей теории принятия решений
    Раздел 3 Принятие решений в условиях многокритериальности
    Тема 3.1 Некритериальные и критериальные методы
    Тема 3.2 Многокритериальные модели
    Тема 3.3 Особенности измерения предпочтений
    Раздел 4 Упорядочение альтернатив на основе учета предпочтений экспертов
    Тема 4.1 Измерения, сравнения и согласованность
    Тема 4.2 Метод парных сравнений
    Тема 4.3 Принципы группового выбора
    Тема 4.4 Экспертные оценки
    Раздел 5 Принятие решений в условиях неопределенности и конфликта
    Тема 5.1 Математическая модель задачи ПР в условиях неопределенности и конфликта
    Тема 5.2Игровые модели ПР
    Тема 5.3 Позиционные игры
    Тема 5.4 Оптимальность в форме равновесия
    Раздел 6 Принятие решений в условиях риска
    Тема 6.1 Теория статистических решений
    Тема 6.2 Отыскание оптимальных решений в условиях риска и неопределенности
    Тема 6.3 Статистические игры с проведением единичного эксперимента
    Раздел 7 Принятие решений в нечетких условиях
    Тема 7.1 Композиционные модели ПР
    Тема 7.2 Классификационные модели ПР
    Экзамен
    ВСЕГО

    Лабораторный практикум

    № п/п № модуля (раздела) дисциплины Наименование лабораторных работ Трудоемкость (час.)
    Тема 2.2 Основные виды моделей теории принятия решений Лабораторная работа № 2. Принятие решений на основе экономико-математический модели, модели теории массового обслуживания, модели управления запасами, модели линейного программирования
    Тема 4.2 Метод парных сравнений Лабораторная работа № 4.Метод парных сравнений. Упорядочение альтернатив на основе парных сравнений и учета предпочтений экспертов
    Тема 5.2Игровые модели ПР Лабораторная работа № 6. Построение матрицы игры. Сведение антагонистической игры к задаче линейного программирования и нахождение ее решения
    Тема 6.3 Статистические игры с проведением единичного эксперимента Лабораторная работа № 8.Выбор стратегий в игре с экспериментом. Использование апостериорных вероятностей

    НАПРАВЛЕНИЕ: «Менеджмент»

    СРОК ОБУЧЕНИЯ: 4 года

    ФОРМА ОБУЧЕНИЯ: очная

    1 Объем дисциплины и виды учебной работы

    2 Разделы и темы дисциплины и виды занятий

    Наименование разделов и тем дисциплины Лекции, час. Практические занятия, час. Лабораторные занятия, час. Семинарские Самостоятельная работа, час. Курсовая работа, час. Всего, час.
    Раздел 1 Менеджмент как процесс принятия управленческих решений
    Тема 1.1 Функции и свойства управленческих решений
    Тема 1.2 Процесс принятия управленческих решений
    Тема 1.3 Целевая ориентация управленческих решений
    Раздел 2 Модели и моделирование в теории принятия решений
    Тема 2.1 Моделирование и анализ альтернатив действий
    Тема 2.2 Основные виды моделей теории принятия решений
    Раздел 3 Принятие решений в условиях многокритериальности
    Тема 3.1 Некритериальные и критериальные методы
    Тема 3.2 Многокритериальные модели
    Тема 3.3 Особенности измерения предпочтений
    Раздел 4 Упорядочение альтернатив на основе учета предпочтений экспертов
    Тема 4.1 Измерения, сравнения и согласованность
    Тема 4.2 Метод парных сравнений
    Тема 4.3 Принципы группового выбора
    Тема 4.4 Экспертные оценки
    Раздел 5 Принятие решений в условиях неопределенности и конфликта
    Тема 5.1 Математическая модель задачи ПР в условиях неопределенности и конфликта
    Тема 5.2Игровые модели ПР
    Тема 5.3 Позиционные игры
    Тема 5.4 Оптимальность в форме равновесия
    Раздел 6 Принятие решений в условиях риска
    Тема 6.1 Теория статистических решений
    Тема 6.2 Отыскание оптимальных решений в условиях риска и неопределенности
    Тема 6.3 Статистические игры с проведением единичного эксперимента
    Раздел 7 Принятие решений в нечетких условиях
    Тема 7.1 Композиционные модели ПР
    Тема 7.2 Классификационные модели ПР
    Экзамен
    ВСЕГО

    Лабораторный практикум

    № п/п № модуля (раздела) дисциплины Наименование лабораторных работ Трудоемкость (час.)
    Тема 1.3 Целевая ориентация управленческих решений Лабораторная работа № 1. Поиск оптимальных решений. Применение оптимизации в системах поддержки ПР
    Тема 2.2 Основные виды моделей теории принятия решений Лабораторная работа № 2. Принятие решений на основе экономико-математический модели, модели теории массового обслуживания, модели управления запасами, модели линейного программирования
    Тема 3.3 Особенности измерения предпочтений Лабораторная работа № 3.Парето-оптимальность. Построение схемы компромиссов
    Тема 4.2 Метод парных сравнений Лабораторная работа № 4.Метод парных сравнений. Упорядочение альтернатив на основе парных сравнений и учета предпочтений экспертов
    Тема 4.4 Экспертные оценки Лабораторная работа № 5.Обработка экспертных оценок. Оценки согласованности экспертов
    Тема 5.2Игровые модели ПР Лабораторная работа № 6. Построение матрицы игры. Сведение антагонистической игры к задаче линейного программирования и нахождение ее решения
    Тема 5.4 Оптимальность в форме равновесия Лабораторная работа № 7. Биматричные игры. Применение принципа равновесия
    Тема 6.3 Статистические игры с проведением единичного эксперимента Лабораторная работа № 8.Выбор стратегий в игре с экспериментом. Использование апостериорных вероятностей

    НАПРАВЛЕНИЕ: «Менеджмент»

    СРОК ОБУЧЕНИЯ: 4 года

    ФОРМА ОБУЧЕНИЯ: заочная

    1 Объем дисциплины и виды учебной работы

    2 Разделы и темы дисциплины и виды занятий

    Наименование разделов и тем дисциплины Лекции, час. Практические занятия, час. Лабораторные занятия, час. Семинарские Самостоятельная работа, час. Курсовая работа, час. Всего, час.
    Раздел 1 Менеджмент как процесс принятия управленческих решений
    Тема 1.1 Функции и свойства управленческих решений
    Тема 1.2 Процесс принятия управленческих решений
    Тема 1.3 Целевая ориентация управленческих решений
    Раздел 2 Модели и моделирование в теории принятия решений
    Тема 2.1 Моделирование и анализ альтернатив действий
    Тема 2.2 Основные виды моделей теории принятия решений
    Раздел 3 Принятие решений в условиях многокритериальности
    Тема 3.1 Некритериальные и критериальные методы
    Тема 3.2 Многокритериальные модели
    Тема 3.3 Особенности измерения предпочтений
    Раздел 4 Упорядочение альтернатив на основе учета предпочтений экспертов
    Тема 4.1 Измерения, сравнения и согласованность
    Тема 4.2 Метод парных сравнений
    Тема 4.3 Принципы группового выбора
    Тема 4.4 Экспертные оценки
    Раздел 5 Принятие решений в условиях неопределенности и конфликта
    Тема 5.1 Математическая модель задачи ПР в условиях неопределенности и конфликта
    Тема 5.2Игровые модели ПР
    Тема 5.3 Позиционные игры
    Тема 5.4 Оптимальность в форме равновесия
    Раздел 6 Принятие решений в условиях риска
    Тема 6.1 Теория статистических решений
    Тема 6.2 Отыскание оптимальных решений в условиях риска и неопределенности
    Тема 6.3 Статистические игры с проведением единичного эксперимента
    Раздел 7 Принятие решений в нечетких условиях
    Тема 7.1 Композиционные модели ПР
    Тема 7.2 Классификационные модели ПР
    Экзамен
    ВСЕГО

    Лабораторный практикум

    № п/п № модуля (раздела) дисциплины Наименование лабораторных работ Трудоемкость (час.)
    Тема 2.2 Основные виды моделей теории принятия решений Лабораторная работа № 2. Принятие решений на основе экономико-математический модели, модели теории массового обслуживания, модели управления запасами, модели линейного программирования
    Тема 4.2 Метод парных сравнений Лабораторная работа № 4.Метод парных сравнений. Упорядочение альтернатив на основе парных сравнений и учета предпочтений экспертов
    Тема 5.2Игровые модели ПР Лабораторная работа № 6. Построение матрицы игры. Сведение антагонистической игры к задаче линейного программирования и нахождение ее решения
    Тема 6.3 Статистические игры с проведением единичного эксперимента Лабораторная работа № 8.Выбор стратегий в игре с экспериментом. Использование апостериорных вероятностей

    НАПРАВЛЕНИЕ: «Менеджмент»

    СРОК ОБУЧЕНИЯ: 3,3 года

    ФОРМА ОБУЧЕНИЯ: заочная

    1 Объем дисциплины и виды учебной работы

    2 Разделы и темы дисциплины и виды занятий