• Процесс обогащения урана. Чем опасен уран и его соединения? Обогащение урана Информацию О

    Обогащение урана является одним из ключевых шагов в создании ядерного оружия. Только определенный вид урана работает в ядерных реакторах и бомбах.

    Отделение этого типа урана от более распространенного сорта требует большого инженерного мастерства, несмотря на то, что технологиям необходимым для этого, уже десятилетия. Задача состоит не в том чтобы выяснить как отделить уран, а в том, чтобы построить и запустить оборудование, необходимое для выполнения этой задачи.

    Урана атомы, как и атомы элементов встречающиеся в природе в разновидности называются изотопами. (Каждый изотоп имеет различное количество в своем ядре.) Уран-235, изотоп, который составляет менее 1 процента всего природного урана, обеспечивает топливом для ядерных реакторов и ядерных бомб, в то время как уран-238, изотоп, который составляет 99 процентов природного урана, не имеет ядерного использования.

    Ключ к разделению

    Ключ к их разделению заключается в том, что атомы урана-235 весят несколько меньше, чем атомы урана-238.

    Для того чтобы отделить малюсенькое количество урана-235, который присутствует в каждом природном образце урановой руды, инженеры сначала с помощью химической реакции превращают уран в газ.

    Затем газ вводят в центрифужные трубы цилиндрические формы размером с человека или больше. Каждая трубка вращается по своей оси на невероятно высоких скоростях, вытягивая более тяжелые молекулы газа урана-238 в центр трубки, оставляя более легкие молекулы газа урана-235 ближе к краям трубки, где их можно высосать.

    Каждый раз, когда газ вращают в центрифуге, только небольшое количество урана-238 газ удаляется из смеси, поэтому трубы используются в серии. Каждая центрифуга вытаскивает немного урана-238, а затем передает слегка очищенную газовую смесь на следующую трубу и т. д.

    Преобразование газового урана

    После разделения газообразного урана-235 на многих этапах центрифуг, инженеры используют другую химическую реакцию для преобразования газового урана обратно в твердый металл. Этот металл можно позже сформировать для пользы в или реакторах или бомбах.

    Поскольку каждый шаг только очищает смесь уранового газа на небольшое количество, страны могут позволить себе только запускать центрифуги, которые спроектированы до самого высокого уровня эффективности. В противном случае производство даже небольшого количества чистого урана-235 становится непомерно дорогим.

    И проектирование и изготовление этих центрифужных труб требует определенного уровня инвестиций и технического ноу-хау за пределами досягаемости многих странах. Трубы требуют особенные типы стали или смесей которые выдерживают значительное давление при вращении, должны быть совершенно цилиндрическими и изготовлены специализированными машинами, трудными для построения.

    Вот пример создания бомбы, которую Соединенные Штаты сбросили на Хиросиму. Нужно 62 кг урана-235, чтобы сделать бомбу, по данным «создание атомной бомбы» (Саймон и Шустер, 1995).

    Разделение этих 62 кг от почти 4 тонн урановой руды произошло в крупнейшем в мире здании и использовало 10 процентов электроэнергии всей страны. Для строительства сооружения потребовалось 20 000 человек, 12 000 человек эксплуатировали объект, а в 1944 году его оснащение обошлось более чем в 500 миллионов долларов.»Это около $7,2 миллиарда долларов в 2018 году.

    В природном уране доля урана-235 (изотопа, который делится в современных ядерных реакторах) составляет всего около 0,7%, остальные 99,3% занимает пока не используемый уран-238. Этих 0,7% недостаточно для запуска и работы ядерного реактора. Поэтому долю урана-235 необходимо искусственно повысить до 4–5%, иначе говоря, обогатить уран по делящемуся изотопу.

    Обогащение осуществляется, например, в газовых центрифугах, где газообразное соединение (гексафторид урана) раскручивается с огромной скоростью - 1500 оборотов в секунду! При этом более тяжелый изотоп (уран-238) «отжимается» к стенке, тогда как более легкий (уран-235) остается у оси вращения. Таким образом, удается разделить изотопы. Если соединить десятки тысяч центрифуг, то можно добиться высокой производительности.

    Газовая центрифуга является уникальным, чрезвычайно сложным, высокотехнологичным оборудованием. Производством газовых центрифуг в России управляет Инжиниринговый центр «Русская газовая центрифуга» . По качеству наше центрифужное оборудование не только не уступает, но и превосходит все импортные аналоги.

    Предприятия по обогащению урана входят в Топливную компанию «ТВЭЛ» , которая объединяет все предприятия и организации, так или иначе связанные с производством ядерного топлива.

    Непосредственно обогащением урана занимаются четыре предприятия:

    • Ангарский электролизный химический комбинат (г. Ангарск, Иркутская область)
    • Производственное объединение «Электрохимический завод» (г. Зеленогорск, Красноярский край)
    • Уральский электрохимический комбинат (г. Новоуральск, Свердловская область)
    • Сибирский химический комбинат (г. Северск, Томская область).

    Их производственные мощности позволяют России в лице Росатома занимать 40% мирового рынка услуг по обогащению урана и планировать увеличение этой доли.

    Россия обладает самой передовой технологией по обогащению урана - газоцентрифужной, которую, несмотря на все попытки, не удалось превзойти ни одной стране мира. Например, в 2007 году на базе Ангарского электролизного химического комбината были основаны еще две компании - ОАО «Международный центр по обогащению урана» , а также российско-казахстанское совместное предприятие ЗАО «Центр по обогащению урана» (ЦОУ). МЦОУ поручено хранить запас урана с низким обогащением (3–5%) в количестве 120 тонн. Этот гарантийный запас сможет приобрести страна, лишенная по каким-либо причинам возможности покупки урана на свободном рынке, чтобы изготовить свежее ядерное топливо и обеспечить бесперебойную работу своей ядерной энергетики. Таким образом, Международный центр по обогащению урана является важным инструментом обеспечения международной безопасности. В настоящее время членами МЦОУ являются Россия, Казахстан, Армения и Украина. Российско-казахстанский проект «Центр по обогащению урана» (ЦОУ) в отличие от МЦОУ носит чисто коммерческий характер - предприятие создано для строительства новых мощностей по обогащению урана, которые будут расположены на производственной площадке Ангарского электролизного химического комбината. В результате мощности Ангарского комбината увеличатся вдвое, а Россия упрочит свое положение на мировом рынке обогатительных услуг.

    Результате природный уран разделяют на обогащенный уран и обедненный уран.

    В природном уране содержится три изотопа урана: 238U (массовая доля 99,2745 %), 235U (доля 0,72 %) и 234U (доля 0,0055 %). Изотоп 238U является относительно стабильным изотопом, не способным к самостоятельной цепной ядерной реакции, в отличие от редкого 235U. настоящее время 235U является первичным делящимся материалом в цепочке технологий ядерных реакторов и ядерного оружия. Однако для многих применений доля изотопа 235U в природном уране мала и подготовка ядерного топлива обычно включает стадию обогащения урана.

    • 1 Причины обогащения
    • 2 Степени обогащения урана
    • 3 Технологии
    • 4 Производство обогащенного урана в мире
    • 5 См. также
    • 6 Примечания
    • 7 Ссылки

    Причины обогащения

    Цепная ядерная реакция подразумевает что хотя бы один нейтрон из образованных распадом атома урана будет захвачен другим атомом и, соответственно, вызовет его распад. первом приближении это означает что нейтрон должен «наткнуться» на атом 235U раньше чем покинет пределы реактора. Значит, конструкция с ураном должна быть достаточно компактной чтобы вероятность найти следующий атом урана для нейтрона была достаточно высока. Но по мере работы реактора 235U постепенно выгорает, что уменьшает вероятность встречи нейтрона и атома 235U, что вынуждает закладывать в реакторах определенный запас этой вероятности. Соответственно, низкая доля 235U в ядерном топливе вызывает необходимость в:

    • большем объёме реактора чтобы нейтрон дольше в нём находился;
    • бóльшую долю объёма реактора должно занимать топливо чтобы повысить вероятность столкновения нейтрона и атома урана;
    • чаще требуется перезагружать топливо на свежее чтобы сохранять заданную объемную плотность 235U в реакторе;
    • высокой доле ценного 235U в отработавшем топливе.

    В процессе совершенствования ядерных технологий были найдены экономические и технологические оптимальные решения, требующие повышения содержания 235U в топливе, то есть обогащения урана.

    В ядерном оружии задача обогащения практически такая же: требуется чтобы за предельно короткое время ядерного взрыва максимальное число атомов 235U нашли свой нейтрон, распались и выделили энергию. Для этого нужна предельно возможная объемная плотность атомов 235U, достижимая при предельном обогащении.

    Степени обогащения урана

    Природный уран с содержанием 235U 0,72 % находит применение в некоторых энергетических реакторах (например, в канадских CANDU), в реакторах-наработчиках плутония (например, А-1).

    Уран с содержанием 235U свыше 20 % называют высокообогащенным (англ. Highly enriched uranium, HEU) или оружейным . На заре ядерной эры были построены несколько образцов ядерного оружия пушечной схемы на основе урана с обогащением около 90 %. Высокообогащенный уран может использоваться в термоядерном оружии в качестве тампера (обжимающей оболочки) термоядерного заряда. Кроме того, уран с высоким обогащением используется в энергетических ядерных реакторах с длительной топливной кампанией (то есть с редкими перезагрузками или вовсе без перезагрузки), например в реакторах космических аппаратов или корабельных реакторах.

    В отвалах обогатительных производств остается обедненный уран с содержанием 235U 0,1…0,3 %. Он широко используется в качестве сердечников бронебойных снарядов артиллерийских орудий благодаря высокой плотности урана и дешевизне обедненного урана. будущем возможно использование обедненного урана в составе уран-плутониевого топлива для энергетических реакторов.

    Технологии

    Основная статья: Разделение изотопов

    Известно много методов разделения изотопов. Большинство методов основано на разной массе атомов разных изотопов: 235-й немного легче 238-го из-за разницы в количестве нейтронов в ядре. Это проявляется в разной инерции атомов. Например, если заставить атомы двигаться по дуге то тяжёлые будут стремиться двигаться по большему радиусу чем лёгкие. На этом принципе построены электромагнитный и аэродинамический методы. электромагнитном методе ионы урана разгоняются в ускорителе элементарных частиц и закручиваются в магнитном поле. аэродинамическом методе газообразное соединение урана продувается через специальное сопло-улитку. Похожий принцип в газовом центрифугировании : газообразное соединение урана помещается в центрифугу, где инерция заставляет тяжёлые молекулы концентрироваться у стенки центрифуги. Термодиффузионный и газодиффузионный методы используют разницу в подвижности молекул: молекулы газа с лёгким изотопом урана более подвижны чем тяжёлые. Поэтому они легче проникают в мелкие поры специальных мембран при газодиффузионной технологии. При термодиффузионном методе менее подвижные молекулы концентрируются в более холодной нижней части разделительной колонны, вытесняя более подвижные в верхнюю горячую часть. Большинство методов разделения работают с газообразными соединениями урана, чаще всего с UF6.

    Многие из методов пытались использовать для промышленного обогащения урана, однако в настоящее время практически все мощности по обогащению работают на основе газового центрифугирования. Наряду с центрифугированием в прошлом широко использовался газодиффузионный метод. На заре ядерной эры использовались электромагнитный, термодиффузии, аэродинамический методы. На сегодняшний день центрифугирование демонстрирует наилучшие экономические параметры обогащения урана. Однако ведутся исследования перспективных методов разделения, например, лазерное разделение изотопов.

    Производство обогащенного урана в мире

    Работы по разделению изотопов исчисляются в специальных единицах работы разделения (ЕРР, англ. Separative work unit, SWU). Мощности заводов по разделению изотопов урана в тысячах ЕРР в год согласно WNA Market Report с прогнозом развития.

    страна Компания, Завод 2012 2013 2015 2020
    Франция Areva: Georges Besse I и II 2500 5500 7000 8200
    Германия, Голландия, Англия, URENCO: Gronau (Германия), Almelo (Голландия), Capenhurst (Англия) 12800 14200 14200 15700
    Япония JNFL (англ.)русск., Rokkaasho 150 75 1050 1500
    США USEC (англ.)русск.: Paducah & Piketon 5000 0 0 3800
    США URENCO: New Mexico 2000 3500 5700 5700
    США Areva: Idaho Falls 0 0 0 3300
    США Global Laser Enrichment 0 0 0 3000
    Россия ОАО ТВЭЛ (TENEX) 25000 26000 30000 37000
    Китай CNNC (англ.)русск., Hanzhun & Lanzhou 1500 2200 3000 8000
    Пакистан, Бразилия, Иран Разные 100 75 500 1000
    Суммарное 49000 51550 61450 87200

    См. также

    • Ядерная энергия
    • Обеднённый уран

    Примечания

    1. Удешевление обогащения. Атомный эксперт. Обзор истории и технологий обогащения урана.

    Ссылки

    • Мировой рынок ядерного топлива, Cambridge, 2013.
    • Глоссарий терминов // Minatom
    • Справка: обогащение урана
    • The Radioactive Boy Scout. Ken Silverstein. (перев. рус.)

    обогащение урана, обогащение урана американский метод

    Обогащение урана Информацию О

    Откуда взялся уран? Скорее всего, он появляется при взрывах сверхновых. Дело в том, что для нуклеосинтеза элементов тяжелее железа должен существовать мощный поток нейтронов, который возникает как раз при взрыве сверхновой. Казалось бы, потом, при конденсации из образованного ею облака новых звездных систем, уран, собравшись в протопланетном облаке и будучи очень тяжелым, должен тонуть в глубинах планет. Но это не так. Уран - радиоактивный элемент, и при распаде он выделяет тепло. Расчет показывает, что если бы уран был равномерно распределен по всей толще планеты хотя бы с той же концентрацией, что и на поверхности, то он выделял бы слишком много тепла. Более того, его поток по мере расходования урана должен ослабевать. Поскольку ничего подобного не наблюдается, геологи считают, что не менее трети урана, а может быть, и весь он сосредоточен в земной коре, где его содержание составляет 2,5∙10 –4 %. Почему так получилось, не обсуждается.

    Где добывают уран? Урана на Земле не так уж мало - по распространенности он на 38-м месте. А больше всего этого элемента в осадочных породах - углистых сланцах и фосфоритах: до 8∙10 –3 и 2,5∙10 –2 % соответственно. Всего в земной коре содержится 10 14 тонн урана, но главная проблема в том, что он весьма рассеян и не образует мощных месторождений. Промышленное значение имеют примерно 15 минералов урана. Это урановая смолка - ее основой служит оксид четырехвалентного урана, урановая слюдка - различные силикаты, фосфаты и более сложные соединения с ванадием или титаном на основе шестивалентного урана.

    Что такое лучи Беккереля? После открытия Вольфгангом Рентгеном Х-лучей французский физик Антуан-Анри Беккерель заинтересовался свечением солей урана, которое возникает под действием солнечного света. Он хотел понять, нет ли и тут Х-лучей. Действительно, они присутствовали - соль засвечивала фотопластинку сквозь черную бумагу. В одном из опытов, однако, соль не стали освещать, а фотопластинка все равно потемнела. Когда же между солью и фотопластинкой положили металлический предмет, то под ним потемнение было меньше. Стало быть, новые лучи возникали отнюдь не из-за возбуждения урана светом и через металл частично не проходили. Их и назвали поначалу «лучами Беккереля». Впоследствии было обнаружено, что это главным образом альфа-лучи с небольшой добавкой бета-лучей: дело в том, что основные изотопы урана при распаде выбрасывают альфа-частицу, а дочерние продукты испытывают и бета-распад.

    Насколько велика радиоактивность урана? У урана нет стабильных изотопов, все они радиоактивные. Самый долгоживущий - уран-238 с периодом полураспада 4,4 млрд лет. Следующим идет уран-235 - 0,7 млрд лет. Оба они претерпевают альфа-распад и становятся соответствующими изотопами тория. Уран-238 составляет более 99% всего природного урана. Из- за его огромного периода полураспада радиоактивность этого элемента мала, а кроме того, альфа-частицы не способны преодолеть ороговевший слой кожи на поверхности человеческого тела. Рассказывают, что И. В. Курчатов после работы с ураном просто вытирал руки носовым платком и никакими болезнями, связанными с радиоактивностью, не страдал.

    Исследователи не раз обращались к статистике заболеваний рабочих урановых приисков и обрабатывающих комбинатов. Вот, например, недавняя статья канадских и американских специалистов, которые проанализировали данные о здоровье более 17 тысяч рабочих прииска Эльдорадо в канадской провинции Саскачеван за 1950–1999 годы (Environmental Research , 2014, 130, 43–50, DOI:10.1016/j.envres.2014.01.002). Они исходили из того, что сильнее всего радиация действует на быстро размножающиеся клетки крови, приводя к соответствующим видам рака. Статистика же показала, что у рабочих прииска заболеваемость различными видами рака крови меньше, чем в среднем у канадцев. При этом основным источником радиации считается не сам по себе уран, а порождаемый им газообразный радон и продукты его распада, которые могут попасть в организм через легкие.

    Чем же вреден уран ? Он, подобно другим тяжелым металлам, весьма ядовит, может вызывать почечную и печеночную недостаточность. С другой стороны, уран, будучи рассеянным элементом, неизбежно присутствует в воде, почве и, концентрируясь в пищевой цепочке, попадает в организм человека. Разумно предположить, что в процессе эволюции живые существа научились обезвреживать уран в природных концентрациях. Наиболее опасен уран в воде, поэтому ВОЗ установила ограничение: поначалу оно составляло 15 мкг/л, но в 2011 году норматив увеличили до 30 мк/г. Как правило, урана в воде гораздо меньше: в США в среднем 6,7 мкг/л, в Китае и Франции - 2,2 мкг/л. Но бывают и сильные отклонения. Так в отдельных районах Калифорнии его в сто раз больше, чем по нормативу, - 2,5 мг/л, а в Южной Финляндии доходит и до 7,8 мг/л. Исследователи же пытаются понять, не слишком ли строг норматив ВОЗ, изучая действие урана на животных. Вот типичная работа (BioMed Research International , 2014, ID 181989; DOI:10.1155/2014/181989). Французские ученые девять месяцев поили крыс водой с добавками обедненного урана, причем в относительно большой концентрации - от 0,2 до 120 мг/л. Нижнее значение - это вода вблизи шахты, верхнее же нигде не встречается - максимальная концентрация урана, измеренная в той же Финляндии, составляет 20 мг/л. К удивлению авторов - статья так и называется: «Неожиданное отсутствие заметного влияния урана на физиологические системы...», - уран на здоровье крыс практически не сказался. Животные прекрасно питались, прибавляли в весе как следует, на болезни не жаловались и от рака не умирали. Уран, как ему и положено, откладывался прежде всего в почках и костях и в стократно меньшем количестве - в печени, причем его накопление ожидаемо зависело от содержания в воде. Однако ни к почечной недостаточности, ни даже к заметному появлению каких-либо молекулярных маркеров воспаления это не приводило. Авторы предложили начать пересмотр строгих нормативов ВОЗ. Однако есть один нюанс: воздействие на мозг. В мозгах крыс урана было меньше, чем в печени, но его содержание не зависело от количества в воде. А вот на работе антиоксидантной системы мозга уран сказался: на 20% выросла активность каталазы, на 68–90% - глютатионпероксидазы, активность же суперкоксиддисмутазы упала независимо от дозы на 50%. Это означает, что уран явно вызывал окислительный стресс в мозгу и организм на него реагировал. Такой эффект - сильное действие урана на мозг при отсутствии его накопления в нем, кстати, равно как и в половых органах, - замечали и раньше. Более того, вода с ураном в концентрации 75–150 мг/л, которой исследователи из университета Небраски поили крыс полгода (Neurotoxicology and Teratology , 2005, 27, 1, 135–144; DOI:10.1016/j.ntt.2004.09.001), сказалаcь на поведении животных, главным образом самцов, выпущенных в поле: они не так, как контрольные, пересекали линии, привставали на задние лапы и чистили шерстку. Есть данные, что уран приводит и к нарушениям памяти у животных. Изменение поведения коррелировало с уровнем окисления липидов в мозгу. Получается, что крысы от урановой водички делались здоровыми, но глуповатыми. Эти данные нам еще пригодятся при анализе так называемого синдрома Персидского залива (Gulf War Syndrome).

    Загрязняет ли уран места разработки сланцевого газа? Это зависит от того, сколько урана в содержащих газ породах и как он с ними связан. Например, доцент Трейси Бэнк из Университета Буффало исследовала сланцевые породы месторождения Марцелус, протянувшегося с запада штата Нью-Йорк через Пенсильванию и Огайо к Западной Виргинии. Оказалось, что уран химически связан именно с источником углеводородов (вспомним, что в родственных углистых сланцах самое высокое содержание урана). Опыты же показали, что используемый при разрыве пласта раствор прекрасно растворяет в себе уран. «Когда уран в составе этих вод окажется на поверхности, он может вызвать загрязнение окрестностей. Радиационного риска это не несет, но уран - ядовитый элемент», - отмечает Трейси Бэнк в пресс-релизе университета от 25 октября 2010 года. Подробных статей о риске загрязнения окружающей среды ураном или торием при добыче сланцевого газа пока не подготовлено.

    Зачем нужен уран? Раньше его применяли в качестве пигмента для изготовления керамики и цветного стекла. Теперь же уран - основа атомной энергетики и атомного оружия. При этом используется его уникальное свойство - способность ядра делиться.

    Что такое деление ядра? Распад ядра на два неравных больших куска. Именно из-за этого свойства при нуклеосинтезе за счет нейтронного облучения ядра тяжелее урана образуются с большим трудом. Суть явления состоит в следующем. Если соотношение числа нейтронов и протонов в ядре не оптимально, оно становится нестабильным. Обычно такое ядро выбрасывает из себя либо альфа-частицу - два протона и два нейтрона, либо бета-частицу - позитрон, что сопровождается превращением одного из нейтронов в протон. В первом случае получается элемент таблицы Менделеева, отстоящий на две клетки назад, во втором - на одну клетку вперед. Однако ядро урана помимо излучения альфа- и бета-частиц способно делиться - распадаться на ядра двух элементов середины таблицы Менделеева, например бария и криптона, что и делает, получив новый нейтрон. Это явление обнаружили вскоре после открытия радиоактивности, когда физики подвергали новооткрытому излучению все, что придется. Вот как пишет об этом участник событий Отто Фриш («Успехи физических наук», 1968, 96, 4). После открытия бериллиевых лучей - нейтронов - Энрико Ферми облучал ими, в частности, уран, чтобы вызвать бета-распад, - он надеялся за его счет получить следующий, 93-й элемент, ныне названный нептунием. Он-то и обнаружил у облученного урана новый тип радиоактивности, который связал с появлением трансурановых элементов. При этом замедление нейтронов, для чего бериллиевый источник покрывали слоем парафина, увеличивало такую наведенную радиоактивность. Американский радиохимик Аристид фон Гроссе предположил, что одним из этих элементов был протактиний, но ошибся. Зато Отто Ган, работавший тогда в Венском университете и считавший открытый в 1917 году протактиний своим детищем, решил, что обязан узнать, какие элементы при этом получаются. Вместе с Лизой Мейтнер в начале 1938 года Ган предположил на основании результатов опытов, что образуются целые цепочки из радиоактивных элементов, возникающих из-за многократных бета-распадов поглотивших нейтрон ядер урана-238 и его дочерних элементов. Вскоре Лиза Мейтнер была вынуждена бежать в Швецию, опасаясь возможных репрессий со стороны фашистов после аншлюса Австрии. Ган же, продолжив опыты с Фрицем Штрассманом, обнаружил, что среди продуктов был еще и барий, элемент с номером 56, который никоим образом из урана получиться не мог: все цепочки альфа-распадов урана заканчиваются гораздо более тяжелым свинцом. Исследователи были настолько удивлены полученным результатом, что публиковать его не стали, только писали письма друзьям, в частности Лизе Мейтнер в Гётеборг. Там на Рождество 1938 года ее посетил племянник, Отто Фриш, и, гуляя в окрестностях зимнего города - он на лыжах, тетя пешком, - они обсудили возможности появления бария при облучении урана вследствие деления ядра (подробнее о Лизе Мейтнер см. «Химию и жизнь», 2013, №4). Вернувшись в Копенгаген, Фриш буквально на трапе парохода, отбывающего в США, поймал Нильса Бора и сообщил ему об идее деления. Бор, хлопнув себя по лбу, сказал: «О, какие мы были дураки! Мы должны были заметить это раньше». В январе 1939 года вышла статья Фриша и Мейтнер о делении ядер урана под действием нейтронов. К тому времени Отто Фриш уже поставил контрольный опыт, равно как и многие американские группы, получившие сообщение от Бора. Рассказывают, что физики стали расходиться по своим лабораториям прямо во время его доклада 26 января 1939 года в Вашингтоне на ежегодной конференции по теоретической физике, когда ухватили суть идеи. После открытия деления Ган и Штрассман пересмотрели свои опыты и нашли, так же, как и их коллеги, что радиоактивность облученного урана связана не с трансуранами, а с распадом образовавшихся при делении радиоактивных элементов из середины таблицы Менделеева.

    Как проходит цепная реакция в уране? Вскоре после того, как была экспериментально доказана возможность деления ядер урана и тория (а других делящихся элементов на Земле в сколько-нибудь значимом количестве нет), работавшие в Принстоне Нильс Бор и Джон Уиллер, а также независимо от них советский физик-теоретик Я. И. Френкель и немцы Зигфрид Флюгге и Готфрид фон Дросте создали теорию деления ядра. Из нее следовали два механизма. Один - связанный с пороговым поглощением быстрых нейтронов. Согласно ему, для инициации деления нейтрон должен обладать довольно большой энергией, более 1 МэВ для ядер основных изотопов - урана-238 и тория-232. При меньшей энергии поглощение нейтрона ураном-238 имеет резонансный характер. Так, нейтрон с энергией 25 эВ имеет в тысячи раз большую площадь сечения захвата, чем с другими энергиями. При этом никакого деления не будет: уран-238 станет ураном-239, который с периодом полураспада 23,54 минуты превратится в нептуний-239, тот, с периодом полураспада 2,33 дня, - в долгоживущий плутоний-239. Торий-232 станет ураном-233.

    Второй механизм - беспороговое поглощение нейтрона, ему следует третий более-менее распространенный делящийся изотоп - уран-235 (а равно и отсутствующие в природе плутоний-239 и уран-233): поглотив любой нейтрон, даже медленный, так называемый тепловой, с энергией как у молекул, участвующих в тепловом движении, - 0,025 эВ, такое ядро разделится. И это очень хорошо: у тепловых нейтронов площадь сечения захвата в четыре раза выше, чем у быстрых, мегаэлектронвольтных. В этом значимость урана-235 для всей последующей истории атомной энергетики: именно он обеспечивает размножение нейтронов в природном уране. После попадания нейтрона ядро урана-235 становится нестабильным и быстро делится на две неравные части. Попутно вылетает несколько (в среднем 2,75) новых нейтронов. Если они попадут в ядра того же урана, то вызовут размножение нейтронов в геометрической прогрессии - пойдет цепная реакция, что приведет к взрыву из-за быстрого выделения огромного количества тепла. Ни уран-238, ни торий-232 так работать не могут: ведь при делении вылетают нейтроны со средней энергией 1–3 МэВ, то есть при наличии энергетического порога в 1 МэВ значительная часть нейтронов заведомо не сможет вызвать реакцию, и размножения не будет. А значит, про эти изотопы следует забыть и придется замедлять нейтроны до тепловой энергии, чтобы они максимально эффективно взаимодействовали с ядрами урана-235. При этом нельзя допустить их резонансного поглощения ураном-238: все-таки в природном уране этот изотоп составляет чуть меньше 99,3% и нейтроны чаще сталкиваются именно с ним, а не с целевым ураном-235. А действуя замедлителем, можно поддерживать размножение нейтронов на постоянном уровне и взрыва не допустить - управлять цепной реакцией.

    Расчет, проведенный Я. Б. Зельдовичем и Ю. Б. Харитоном в том же судьбоносном 1939 году, показал, что для этого нужно применить замедлитель нейтронов в виде тяжелой воды или графита и обогатить ураном-235 природный уран по меньшей мере в 1,83 раза. Тогда эта идея показалась им чистой фантазией: «Следует отметить, что примерно двойное обогащение тех довольно значительных количеств урана, которые необходимы для осуществления цепного взрыва, <...> представляет собой чрезвычайно громоздкую, близкую к практической невыполнимости задачу». Сейчас эта задача решена, и атомная промышленность серийно выпускает для электростанций уран, обогащенный ураном-235 до 3,5%.

    Что такое спонтанное деление ядер? В 1940 году Г. Н. Флеров и К. А. Петржак обнаружили, что деление урана может происходить спонтанно, без всякого внешнего воздействия, правда период полураспада гораздо больше, чем при обычном альфа-распаде. Поскольку при таком делении тоже получаются нейтроны, если не дать им улететь из зоны реакции, они-то и послужат инициаторами цепной реакции. Именно это явление используют при создании атомных реакторов.

    Зачем нужна атомная энергетика? Зельдович и Харитон были в числе первых, кто посчитал экономический эффект атомной энергетики («Успехи физических наук», 1940, 23, 4). «...В настоящий момент еще нельзя сделать окончательных заключений о возможности или невозможности осуществления в уране ядерной реакции деления с бесконечно разветвляющимися цепями. Если такая реакция осуществима, то автоматически осуществляется регулировка скорости реакции, обеспечивающая спокойное ее протекание, несмотря на огромное количество находящейся в распоряжении экспериментатора энергии. Это обстоятельство исключительно благоприятно для энергетического использования реакции. Приведем поэтому - хотя это и является делением шкуры неубитого медведя - некоторые числа, характеризующие возможности энергетического использования урана. Если процесс деления идет на быстрых нейтронах, следовательно, реакция захватывает основной изотоп урана (U238), то <исходя из соотношения теплотворных способностей и цен на уголь и уран> стоимость калории из основного изотопа урана оказывается примерно в 4000 раз дешевле, чем из угля (если, конечно, процессы "сжигания" и теплосъема не окажутся в случае урана значительно дороже, чем в случае угля). В случае медленных нейтронов стоимость "урановой" калории (если исходить из вышеприведенных цифр) будет, принимая во внимание, что распространенность изотопа U235 равна 0,007, уже лишь в 30 раз дешевле "угольной" калории при прочих равных условиях».

    Первую управляемую цепную реакцию провел в 1942 году Энрико Ферми в Чикагском университете, причем управляли реактором вручную - задвигая и выдвигая графитовые стержни при изменении потока нейтронов. Первая электростанция была построена в Обнинске в 1954 году. Помимо выработки энергии первые реакторы работали еще и на производство оружейного плутония.

    Как функционирует атомная станция? Сейчас большинство реакторов работают на медленных нейтронах. Обогащенный уран в виде металла, сплава, например с алюминием, или в виде оксида складывают в длинные цилиндры - тепловыделяющие элементы. Их определенным образом устанавливают в реакторе, а между ними вводят стержни из замедлителя, которые и управляют цепной реакцией. Со временем в тепловыделяющем элементе накапливаются реакторные яды - продукты деления урана, также способные к поглощению нейтронов. Когда концентрация урана-235 падает ниже критической, элемент выводят из эксплуатации. Однако в нем много осколков деления с сильной радиоактивностью, которая уменьшается с годами, отчего элементы еще долго выделяют значительное количество тепла. Их выдерживают в охлаждающих бассейнах, а затем либо захоранивают, либо пытаются переработать - извлечь несгоревший уран-235, наработанный плутоний (он шел на изготовление атомных бомб) и другие изотопы, которым можно найти применение. Неиспользуемую часть отправляют в могильники.

    В так называемых реакторах на быстрых нейтронах, или реакторах-размножителях, вокруг элементов устанавливают отражатели из урана-238 или тория-232. Они замедляют и отправляют обратно в зону реакции слишком быстрые нейтроны. Замедленные же до резонансных скоростей нейтроны поглощают названные изотопы, превращаясь соответственно в плутоний-239 или уран-233, которые могут служить топливом для атомной станции. Так как быстрые нейтроны плохо реагируют с ураном-235, нужно значительно увеличивать его концентрацию, но это окупается более сильным потоком нейтронов. Несмотря на то что реакторы-размножители считаются будущим атомной энергетики, поскольку дают больше ядерного топлива, чем расходуют, - опыты показали: управлять ими трудно. Сейчас в мире остался лишь один такой реактор - на четвертом энергоблоке Белоярской АЭС.

    Как критикуют атомную энергетику? Если не говорить об авариях, то основным пунктом в рассуждениях противников атомной энергетики сегодня стало предложение добавить к расчету ее эффективности затраты по защите окружающей среды после выведения станции из эксплуатации и при работе с топливом. В обоих случаях возникают задачи надежного захоронения радиоактивных отходов, а это расходы, которые несет государство. Есть мнение, что если переложить их на себестоимость энергии, то ее экономическая привлекательность пропадет.

    Существует оппозиция и среди сторонников атомной энергетики. Ее представители указывают на уникальность урана-235, замены которому нет, потому что альтернативные делящиеся тепловыми нейтронами изотопы - плутоний-239 и уран-233 - из-за периода полураспада в тысячи лет в природе отсутствуют. А получают их как раз вследствие деления урана-235. Если он закончится, исчезнет прекрасный природный источник нейтронов для цепной ядерной реакции. В результате такой расточительности человечество лишится возможности в будущем вовлечь в энергетический цикл торий-232, запасы которого в несколько раз больше, чем урана.

    Теоретически для получения потока быстрых нейтронов с мегаэлектронвольтными энергиями можно использовать ускорители частиц. Однако если речь идет, например, о межпланетных полетах на атомном двигателе, то реализовать схему с громоздким ускорителем будет очень непросто. Исчерпание урана-235 ставит крест на таких проектах.

    Что такое оружейный уран? Это высокообогащенный уран-235. Его критическая масса - она соответствует размеру куска вещества, в котором самопроизвольно идет цепная реакция, - достаточно мала для того, чтобы изготовить боеприпас. Такой уран может служить для изготовления атомной бомбы, а также как взрыватель для термоядерной бомбы.

    Какие катастрофы связаны с применением урана? Энергия, запасенная в ядрах делящихся элементов, огромна. Вырвавшись из-под контроля по недосмотру или вследствие умысла, эта энергия способна натворить немало бед. Две самые чудовищные ядерные катастрофы случились 6 и 8 августа 1945 года, когда ВВС США сбросили атомные бомбы на Хиросиму и Нагасаки, в результате чего погибли и пострадали сотни тысяч мирных жителей. Катастрофы меньшего масштаба связаны с авариями на атомных станциях и предприятиях атомного цикла. Первая крупная авария случилась в1949 году в СССР на комбинате «Маяк» под Челябинском, где нарабатывали плутоний; жидкие радиоактивные отходы попали в речку Течу. В сентябре 1957 года на нем же произошел взрыв с выбросом большого количества радиоактивного вещества. Через одиннадцать дней сгорел британский реактор по наработке плутония в Уиндскейле, облако с продуктами взрыва рассеялось над Западной Европой. В 1979 году сгорел реактор на АЭС Тримейл-Айленд в Пенсильвании. К наиболее масштабным последствиям привели аварии на Чернобыльской АЭС (1986) и АЭС в Фукусиме (2011), когда воздействию радиации подверглись миллионы людей. Первая засорила обширные земли, выбросив в результате взрыва 8 тонн уранового топлива с продуктами распада, которые распространились по Европе. Вторая загрязнила и спустя три года после аварии продолжает загрязнять акваторию Тихого океана в районах рыбных промыслов. Ликвидация последствий этих аварий обошлась весьма дорого, и, если бы разложить эти затраты на стоимость электроэнергии, она бы существенно выросла.

    Отдельный вопрос - последствия для здоровья людей. Согласно официальной статистике, многим людям, пережившим бомбардировку или живущим на загрязненной территории, облучение пошло на пользу - у первых более высокая продолжительность жизни, у вторых меньше онкологических заболеваний, а некоторое увеличение смертности специалисты связывают с социальным стрессом. Количество же людей, погибших именно от последствий аварий или в результате их ликвидации, исчисляется сотнями человек. Противники атомных электростанций указывают, что аварии привели к нескольким миллионам преждевременных смертей на европейском континенте, просто они незаметны на статистическом фоне.

    Вывод земель из человеческого использования в зонах аварий приводит к интересному результату: они становятся своего рода заповедниками, где растет биоразнообразие. Правда, отдельные животные страдают от болезней, связанных с облучением. Вопрос, как быстро они приспособятся к повышенному фону, остается открытым. Есть также мнение, что последствием хронического облучения оказывается «отбор на дурака» (см. «Химию и жизнь», 2010, №5): еще на стадии эмбриона выживают более примитивные организмы. В частности, применительно к людям это должно приводить к снижению умственных способностей у поколения, родившегося на загрязненных территориях вскоре после аварии.

    Что такое обедненный уран? Это уран-238, оставшийся после выделения из него урана-235. Объемы отхода производства оружейного урана и тепловыделяющих элементов велики - в одних США скопилось 600 тысяч тонн гексафторида такого урана (о проблемах с ним см. «Химию и жизнь», 2008, №5). Содержание урана-235 в нем - 0,2%. Эти отходы надо либо хранить до лучших времен, когда будут созданы реакторы на быстрых нейтронах и появится возможность переработки урана-238 в плутоний, либо как-то использовать.

    Применение ему нашли. Уран, как и другие переходные элементы, используют в качестве катализатора. Например, авторы статьи в ACS Nano от 30 июня 2014 года пишут, что катализатор из урана или тория с графеном для восстановления кислорода и перекиси водорода «имеет огромный потенциал для применения в энергетике». Поскольку плотность урана высока, он служит в качестве балласта для судов и противовесов для самолетов. Годится этот металл и для радиационной защиты в медицинских приборах с источниками излучения.

    Какое оружие можно делать из обедненного урана? Пули и сердечники для бронебойных снарядов. Расчет здесь такой. Чем тяжелее снаряд, тем выше его кинетическая энергия. Но чем больше размер снаряда, тем менее концентрирован его удар. Значит, нужны тяжелые металлы, обладающие высокой плотностью. Пули делают из свинца (уральские охотники одно время использовали и самородную платину, пока не поняли, что это драгоценный металл), сердечники же снарядов - из вольфрамового сплава. Защитники природы указывают, что свинец загрязняет почву в местах боевых действий или охоты и лучше бы заменить его на что-то менее вредное, например на тот же вольфрам. Но вольфрам недешев, а сходный с ним по плотности уран - вот он, вредный отход. При этом допустимое загрязнение почвы и воды ураном примерно в два раза больше, чем для свинца. Так получается потому, что слабой радиоактивностью обедненного урана (а она еще и на 40% меньше, чем у природного) пренебрегают и учитывают действительно опасный химический фактор: уран, как мы помним, ядовит. В то же время его плотность в 1,7 раза больше, чем у свинца, а значит, размер урановых пуль можно уменьшить в два раза; уран гораздо более тугоплавкий и твердый, чем свинец, - при выстреле он меньше испаряется, а при ударе в цель дает меньше микрочастиц. В общем, урановая пуля меньше загрязняет окружающую среду, чем свинцовая, правда, достоверно о таком использовании урана неизвестно.

    Зато известно, что пластины из обедненного урана применяют для укрепления брони американских танков (этому способствуют его высокие плотность и температура плавления), а также вместо вольфрамового сплава в сердечниках для бронебойных снарядов. Урановый сердечник хорош еще и тем, что уран пирофорен: его горячие мелкие частицы, образовавшиеся при ударе о броню, вспыхивают и поджигают все вокруг. Оба применения считаются радиационно безопасными. Так, расчет показал, что, даже просидев безвылазно год в танке с урановой броней, загруженном урановым боекомплектом, экипаж получит лишь четверть допустимой дозы. А чтобы получить годовую допустимую дозу, надо на 250 часов прикрутить к поверхности кожи такой боеприпас.

    Снаряды с урановыми сердечниками - к 30-мм авиационным пушкам или к артиллерийским подкалиберным - применяли американцы в недавних войнах, начав с иракской кампании 1991 года. В тот год они высыпали на иракские бронетанковые части в Кувейте и при их отступлении 300 тонн обедненного урана, из них 250 тонн, или 780 тысяч выстрелов, пришлось на авиационные пушки. В Боснии и Герцеговине при бомбежках армии непризнанной Республики Сербской было истрачено 2,75 тонны урана, а при обстрелах югославской армии в крае Косово и Метохия - 8,5 тонн, или 31 тысяча выстрелов. Поскольку ВОЗ к тому времени озаботилась последствиями применения урана, был проведен мониторинг. Он показал, что один залп состоял примерно из 300 выстрелов, из которых 80% содержало обедненный уран. В цели попадало 10%, а 82% ложилось в пределах 100 метров от них. Остальные рассеивались в пределах 1,85 км. Снаряд, попавший в танк, сгорал и превращался в аэрозоль, легкие цели вроде бронетранспортеров урановый снаряд прошивал насквозь. Таким образом, в урановую пыль в Ираке могло превратиться от силы полторы тонны снарядов. По оценкам же специалистов американского стратегического исследовательского центра «RAND Corporation», в аэрозоль превратилось больше, от 10 до 35% использованного урана. Борец с урановыми боеприпасами хорват Асаф Дуракович, работавший во множестве организаций от эр-риядского Госпиталя короля Фейсала до вашингтонского Уранового медицинского исследовательского центра, считает, что только в Южном Ираке в 1991 году образовалось 3–6 тонн субмикронных частиц урана, которые рассеялись по обширному району, то есть урановое загрязнение там сопоставимо с чернобыльским.

    От редактора: Сообщения в новостях о ядерной деятельности Ирана вновь свидетельствуют об актуальности темы обогащения урана. Этот выпуск журнала SDA призван подкрепить аргументированную дискуссию информацией и анализом о состоянии и процессе обогащения урана.

    В статье описаны процесс и технологии обогащения урана, а также приведена небольшая историческая справка. В кратко представлена информация о рабочем состоянии урановых обогатительных производств в различных странах мира. Проверить свои знания в области обогащения урана можно, ответив на .

    Статья, таблица и тест основаны на отчете , опубликованном в октябре 2004 года IEER для Института исследований ядерной политики (Nuclear Policy Research Institute). Ссылки представлены в отчете.

    Знания и возможности в области обогащения урана получили довольно широкое распространение и в атомной энергетике, и в создании ядерного оружия. Во многом этот процесс уже вышел из-под контроля. И это вызывает особое беспокойство в свете возникающих предложений, которые в ближайшие десятилетия вполне могут стимулировать более широкое применение атомной энергии в мире.

    Например, для того, чтобы обеспечить топливом тысячу АЭС мощностью 1000 мгвт (распространенный пример во многих программах ядерного развития), потребуется глобальная мощность обогащения урана, которая примерно в 9-10 раз превышает производства, действующие сегодня в США. Если хотя бы один процент такой мощности был бы задействован для получения высокообогащенного урана (ВОУ), то ежегодно производились бы такие объемы ВОУ, которые позволили бы создать от 175 до 310 единиц ядерного оружия. С учетом расширенной торговли специализированными матери алами, необходимыми для возведения и эксплуатации газогенераторных центрифужных и прочих обогатительных установок, которые способны привести к увеличению производства атомной энергии, определить законность торговли и распространения якобы "мирных" технологий станет еще труднее.

    Очень важно обращать внимание на государства, такие как Иран, которые в настоящее время добились успехов в своих попытках обеспечить поддержку программе создания ядерного оружия. Однако не менее важно помнить о том, насколько широко распространена технология обогащения урана и насколько может вырасти угроза, если допустить применение данных технологий в любой точке мира в стремлении расширить рамки использования атомной энергии. Другими словами, мы правильно поступаем, не игнорируя страны, которые имеют современные программы по ядерному оружию и атомной энергии, а учитывая их внушительный потенциал для распространения и менее впечатляющую репутацию в этой сфере 1 . У всех пяти ядерных держав-участниц Договора о нераспространении ядерного оружия (ДНЯО) - США, России, Великобритании, Франции и Китая - есть заводы по обогащению урана, которые когда-то использовались для производства оружейного ВОУ. Все пять государств также обладают полномасштабными обогатительными производствами, которые участвовали в производстве низкообогащенного урана (НОУ), применяемого в качестве топлива для промышленных ядерных реакторов.

    Помимо пяти известных государств, обладающих ядерным оружием, еще только у трех стран есть урановые обогатительные предприятия, которые использовались в производстве большого количества топлива для промышленных ядерных реакторов. Однако существует ряд других стран, которые занимались технологиями обогащения, и некоторые из них замечены или подозреваются в использовании обогатительного потенциала в военных целях. В кратко представлена доступная на сегодняшний день информация о рабочем состоянии урановых обогатительных производств в различных странах мира.

    В Пакистане, одном из тех государств, которые создали ядерное оружие, не будучи участниками ДНЯО, есть комбинаты, где обогатили ВОУ в военных целях. Как известно, Южная Африка также произвела ядерное оружие с помощью обогащенного урана, полученного на собственных производствах. С другой стороны, Индия и Израиль создали атомные бомбы из плутония-239 (который производится в ядерных реакторах, когда нерасщепляющийся уран-238 поглощает нейтрон с малой энергией). Северная Корея, которая в январе 2003 года вышла из ДНЯО, не уведомив об этом, как положено, за три месяца, дает повод для серьезных подозрений в производстве небольшого количества ядерного оружия с применением плутония. Вопрос о возможном продолжении программы по обогащению урана в Северной Корее также остается открытым.

    Уран

    Только один элемент, который встречается в природе, является сырьем для создания атомных бомб. Это уран, химический знак "U" 2 . Отличительным свойством урана, которое необходимо для производства ядерного оружия и атомной энергии, является его способность к расщеплению или делению на две более легкие фракции с помощью облучения нейтронами и к высвобождению энергии в этом процессе.

    Природный уран (то есть тот, который добывается из недр земли) встречается в виде сочетания трех различных изотопов, то есть атомов с тремя различными атомными массами, обладающими фактически одинаковыми химическими, однако различными ядерными свойствами. Этими изотопами являются уран-234, уран-235 и уран-238. Уран-234 - это высокорадиоактивный микроэлемент, обнаруженный в природном уране. Уран-235 - это единственное расщепляющееся вещество, встречающееся в природе в значительном количестве. Уран-238 - этот изотоп превалирует в природном уране (99,284 % массы выборки природного урана составляет уран-238), но он не поддается расщеплению. Однако уран-238 можно разделить с помощью нейтронов с высокой энергией, высвобождая большие объемы энергии, и поэтому его нередко используют для увеличения взрывной силы термоядерных или водородных бомб.

    Некоторые свойства этих трех изотопов, обнаруженных в природном уране, кратко представлены в Tаблице 1. Поскольку уран-234 составляет очень маленькую долю в общей массе природного урана и не используется в каких-либо серьезных программах, в данной статье мы подробно остановимся только на двух других изотопах - уран-235 и уран-238.

    Таблица 1: Краткая информация об изотопах урана

    Благодаря небольшому количеству U-235, природный уран в определенных условиях может поддерживать цепную реакцию, и таким образом является топливом для определенных типов реакторов (графитовые ядерные и тяжеловодные ядерные реакторы 3 - последние продает Канада в промышленном масштабе). В самом распространенном на сегодняшний день типе реактора (легководный ядерный), в котором обыкновенная вода служит охлаждающим и замедляющим средством, для поддержания реакции доля U-235 в топливе должна превышать 0,7% - уровень его содержания в природном уране.

    Комплекс производственных процессов, производимых для повышения процента U-235 в установленном количестве урана называется "обогащением урана". Здесь термин "обогащение" означает повышение процента расщепляющегося изотопа U-235. В легководных ядерных реакторах обычно используют от 3 до 5 процентов обогащенного урана, то есть доля U-235 в топливе составляет от 3 до 5%, а остальная часть фактически состоит из U-238. Вещество с таким уровнем содержания U-235 называется "низкообогащенным ураном" или НОУ.

    Атомные бомбы невозможно создать из природного или низкообогащенного урана. Доля U-235 слишком мала и не обеспечивает нарастающую "сверхкритическую" цепную реакцию за довольно короткое время, чтобы произвести взрыв. Для создания атомной бомбы содержание U-235 в уране должно быть как минимум около 20%. Однако бомба из урана, обогащенного в такой минимальной степени, была бы слишком объемна для доставки, поскольку потребовалось бы огромное количество урана и еще больше обычных взрывчатых веществ для его сжатия в сверхкритическую массу.

    На практике уран, в котором содержится не менее 90% U-235, уже использовался для создания ядерного оружия. Вещество с таким уровнем обогащения называется высокообогащенным ураном или ВОУ. Атомная бомба, уничтожившая Хиросиму 6 августа 1945 года, была создана примерно из 60 килограмм ВОУ. Высокообогащенный уран также применяется в исследовательских и морских ядерных реакторах - на авианосцах и подводных лодках. ВОУ, предназначенный для исследовательских ядерных реакторов, может особенно заинтересовать тех, кто хотел бы совершить диверсию с использованием ядерного оружия, поскольку охраняется, как правило, хуже и зачастую находится в городах или на территории университетов. В отличие от облученного ядерного топлива для реактора, необлученный ВОУ не несет радиоактивной опасности..

    Такой же процесс и производство можно использовать, обогащая уран для топлива в промышленных легководных реакторах, то есть для создания НОУ, а также получения ВОУ для атомных бомб. Таким образом, все технологии обогащения урана являются потенциальными источниками распространения ядерного оружия. Кроме того, некоторые другие способы обогащения урана выявить намного труднее, и это прибавляет дополнительные опасения, связанные с возможным существованием нелегальных программ.

    Обогащение урана

    Поскольку все изотопы урана обладают фактически одинаковыми химическими свойствами, повышение доли урана-235 в выборке зависит от разницы атомных масс изотопов (которым присвоены следующие номера: 234, 235 и 238). U-238 тяжелее U-235 чуть более одного процента. Если уран обратить в газообразное состояние, тогда молекулы, содержащие более легкий U-235, в среднем будут двигаться с большей скоростью (при заданной температуре) по сравнению с более тяжелыми молекулами, содержащими U-238.

    В ходе обычного процесса обогащения, поток преобразованного в газ природного урана, содержащего U-235 и U-238, делится на два потока благодаря небольшой разнице в массах этих двух изотопов. Один поток становится богаче ураном-235 ("обогащенный" поток урана), при этом другой становится беднее этим изотопом ("обедненный" поток урана, где термин "обедненный" означает более низкий процент U-235 по отношению к природному урану). Более подробная информация о процессах обогащения представлена ниже, в главе "Технологии обогащения" 4 .

    Мощность урановой обогатительной установки по повышению процента U-235 представлена в единицах, которые называются килограммом Единицы разделительной работы (ЕРР) (Separative Work Units - SWU, по-английски произносятся "свуз"). В предприятиях производственного уровня мощности установок, как правило, составляют от нескольких сот до нескольких тысяч метрических тонн ЕРР (MTЕРР) в год. (1 MTЕРР = 1000 ЕРР.) Единица разделительной работы - это комплексная единица, которая зависит как от доли U-235, которую хотят получить в обогащенном потоке, так и от того, сколько U-235 из исходного вещества остается в потоке, обедненном данным изотопом. Единицу ЕРР (SWU) можно рассматривать как количество усилий, которые необходимо приложить для достижения установленной степени обогащения. Чем меньше U-235 из исходного вещества следует оставить в обедненном уране, тем больше ЕРР необходимо для достижения желаемой степени обогащения 5 .

    Количество ЕРР, обеспечиваемое обогатительной установкой, напрямую зависит от объема энергии, потребляемой этой установкой. Две самые распространенные технологии обогащения на сегодняшний день, о которых подробно написано ниже, значительно отличаются в своем энергопотреблении. Для современных газодиффузионных установок, как правило, требуется от 2400 до 2500 киловатт-час (кВ-ч) электроэнергии на ЕРР, тогда как газогенераторные центрифужные установки потребляют только 50-60 кВ-ч электроэнергии на ЕРР.

    Для того чтобы обеспечить типовой легководный ядерный реактор мощностью 1000 мегаватт электроэнергии, использующий обогащенный уран в качестве топлива, потребуется примерно от 100 000 до 120 000 объема услуг по обогащению урана в ЕРР в год. Если бы такое обогащение было обеспечено за счет газодиффузионной установки (по примеру функционирующей сегодня в городе Падьюка, штат Кентукки, США), тогда на процесс обогащения ушло бы примерно 3-4% от объема электроэнергии, генерированного данным реактором 6 . С другой стороны, если бы обогащение топливного урана было проведено в газогенераторных центрифугах (которые действуют сегодня во многих регионах мира), тогда на процесс обогащения ушло бы менее 0,1% от объема электроэнергии, генерированного ядерной установкой за год.

    Помимо килограмма ЕРР, стоит рассмотреть еще один важный параметр. Это масса природного урана, которая необходима для получения желаемой массы обогащенного урана. Как и с количеством ЕРР требуемое количество исходного материала также будет зависеть от желаемой степени обогащения, а также от количества U-235, которое остается в обедненном уране. Требуемое количество природного урана будет сокращаться при уменьшении доли U-235, которую необходимо оставить в обедненном уране.

    К примеру, при обогащении НОУ для легководного ядерного реактора в обогащенном потоке обычно содержится 3,6% U-235 (по сравнению с 0,7% в природном уране), а в обедненном потоке содержится от 0,2 до 0,3 процента U-235. Для выработки одного килограмма такого НОУ потребуется примерно 8 килограмм природного урана и 4,5 ЕРР, если допустимая доля U-235 в обедненном урановом потоке составляет 0,3%. С другой стороны, если в обедненном потоке останется только 0,2% U-235, тогда потребуется всего лишь 6,7 килограмма природного урана, однако - около 5,7 ЕРР для обогащения.

    Для получения одного килограмма высокообогащенного урана (то есть урана, содержащего 90% U-235), потребуется более 193 ЕРР и почти 219 килограммов природного урана при условии, что в обедненном уране останется 0,3% U-235. Если допустимая доля U-235 в обедненном уране составит 0, 2%, потребуется почти 228 ЕРР и более 176 килограмм природного урана.

    В Таблице 2 представлена краткая информация о затратах (на природный уран и услуги по его обогащению), которые требуются для получения одного килограмма НОУ и одного килограмма ВОУ с долей U-235, составляющей 0,2% и 0,3% в обедненном урановом потоке.

    Таблица 2: Затраты на получение одного килограмма низкообогащенного урана
    и одного килограмма высокообогащенного урана

    НОУ = уран, содержащий 3.6% U-235, обычно используется в легководном реакторе.
    ВОУ = уран, содержащий 90% U-235, обычно используется для создания ядерного оружия.
    ЕРР = Единица разделительной работы
    кг = килограмм

    С учетом того, что требуемый объем природного урана и ЕРР в процессе обогащения меняются в противоположном направлении для установленной степени обогащения, природный уран дешев, а услуги по его обогащению дороги, владельцы обогатительных установок согласятся на "выброс" большей доли U-235 в обедненный поток (то есть, им будет выгоднее использовать больше природного урана и меньше ЕРР). С другой стороны, если природный уран дороже услуг по его обогащению, тогда владельцы установок выберут обратный вариант.

    Для того чтобы обогатить уран для атомной бомбы, эквивалентной той, что США сбросили на Хиросиму (это примерно 60 кг ВОУ), потребовалось бы от 10,6 до 13,1 метрических тонн природного урана, а также от 11 600 до 13 700 ЕРР для обогащения. Однако для создания более сложных видов ядерного оружия потребовалось бы намного меньше половины этого количества. Для современного типа урановых бомб обычно требуется только 20-25 килограмм ВОУ.

    Если вместо природного урана в качестве исходного вещества для выработки ВОУ использовался бы низкообогащенный уран (содержащий 3,6% U-235), тогда для получения одного килограмма высокообогащенного урана потребовалось бы лишь 70-78 ЕРР и 26-27 килограмм исходного вещества. Это значит, что для получения ВОУ, необходимого для создания эквивалента бомбы, сброшенной на Хиросиму, потребовалось бы обогатить всего лишь 1,6 тонны НОУ, то есть меньше одной десятой от общего количества НОУ, необходимого для ежегодного снабжения топливом одного ядерного реактора мощностью 1000 мгвт. Таким образом, примерно две трети совокупного объема услуг по обогащению урана, необходимого для получения оружейного ВОУ, участвует в обогащении урана из природного урана (0,7% U-235) в НОУ (3,6% U-235). При этом только около одной трети совокупного объема услуг участвует в обогащении НОУ с окончательной переработкой его в ВОУ (90% U-235), как показано на схеме.

    Таким образом, запасы низкообогащенного урана, если их поддерживать в состоянии, удобном для обогащения (то есть таком, как гексафторид урана), могут стать исходным веществом для более легкого и быстрого получения высокообогащенного урана, применяемого для создания ядерного оружия. Это одна из самых опасных сторон широкого распространения технологий обогащения в рамках распространения ядерной энергетики.

    Услуги по обогащению, необходимые для получения высокообогащенного урана из природного урана

    Технологии обогащения

    Широкое применение получили четыре технологии обогащения урана. Три из них - газовая диффузия, газовое центрифугирование и форсунка / аэродинамическое разделение - основаны на конверсии урана в газ гексафторид урана (UF 6). Четвертый метод - электромагнитное разделение - основан на использовании ионизированного уранового газа, получаемого из твердого тетрахлорида урана (UCL 4).

    Газовая диффузия

    Процесс газовой диффузии использовался для обогащения почти всего низко- и высокообогащенного урана, который производился в США. Впервые этот метод был разработан в 1940-х годах в рамках Манхэттенского проекта и был частично применен при обогащении урана для бомбы, сброшенной на Хиросиму. Все пять известных ядерных держав-участниц Договора о нераспространении ядерного оружия (ДНЯО) в тот или иной период времени ввели в эксплуатацию газодиффузионные установки, однако на сегодняшний день такие объекты продолжают функционировать только в США и Франции. Для процесса диффузии необходимо закачать уран, находящийся в газообразном состоянии, через большое количество пористых барьеров. Это очень энергоемкий процесс.

    Для того чтобы превратить уран в газообразное состояние, при котором он может участвовать в процессе газовой диффузии, осуществляют конверсию природного урана в гексафторид урана (UF 6). Молекулы гексафторида урана, содержащие атомы U-235, будучи немного легче, станут двигаться через каждый барьер с несколько более высокой степенью разделения, нежели те, которые содержат атомы U-238. Для визуализации этого процесса можно привести пример продувания песка через множество решет. Более мелкие песчинки будут преимущественно проходить через каждое решето и, таким образом, после каждой ступени отсеивания они будут составлять несколько более высокий процент от общего объема песчинок, по сравнению с тем процентом, который они имели на предыдущей ступени просеивания. Схема одной из таких ступеней просеивания в газодиффузионной установке представлена на Рисунке 1.

    Разница в массах, а значит и скоростях молекул UF 6 , содержащих U-235 и U-238, невелика. Таким образом, чтобы обогатить большие промышленные или военные объемы урана, необходимы тысячи ступеней обогащения. В газодиффузионной установке ступени построены в "каскады", которые позволяют на каждой ступени приращивать обогащение, полученное на предыдущих ступенях, а также более эффективно использовать обедненный урановый поток. Чтобы понять масштаб такого производства, нужно знать, что на момент строительства газодиффузионного завода, возведенного в начале 1940-х годов в городе Ок-Ридж, штат Теннеси, США, это был крупнейший промышленный объект в мире.

    Наиболее сложной задачей при возведении газодиффузионной установки является производство проницаемых барьеров, которые необходимы для работы диффузоров. Материал для таких барьеров должен быть высокопрочным и способным поддерживать одинаковый диаметр пор в течение нескольких лет работы установки. Это очень сложная задача при использовании газа гексафторида урана, который обладает высококоррозионным свойством. Толщина типичных барьеров составляет всего 5 миллиметров (менее 0,2 дюйма), а их отверстия лишь в 30-300 раз больше диаметра одного атома урана.

    Помимо того, что в ходе работы установки требуются большие объемы электроэнергии, компрессоры в газодиффузионных производствах также генерируют много тепла, которое нужно рассеивать. В американских установках теплоотдача происходит с помощью истощающих озон хлорфторуглеродов (CFCs), таких как охладитель CFC-114 (нередко его называют фреон или фреон-114). Производство, ввоз, а также применение CFC было серьезно ограничено в 1987 году Монреальским протоколом о веществах, которые истощают озоновый слой (Montreal Protocol on Substances That Deplete the Ozone Layer) и который США выполняют посредством поправок 1990 года к Закону о контроле над загрязнением воздуха (Clean Air Act).

    В результате таких мер производство фреона в США было прекращено в 1995 году. С 1991 по 2002 годы выбросы этого вещества в атмосферу со стороны крупных потребителей в США сократились почти на 60%. Однако выбросы газодиффузионного завода в городе Падьюка (штат Кентукки, США) остались фактически на том же уровне за данный период, сократившись всего на 7% с 1989 по 2002 годы. В 2002 году Падьюкский обогатительный завод выбросил в атмосферу более 197,3 метрических тонны фреона через негерметичные трубы и прочее оборудование. Только с одного этого объекта в атмосферу попало свыше 55% всех выбросов этого истощающего озоновый слой CFC со всех крупных производств США за 2002 год.

    Из-за того, что с 1995 г. фреон в США не производится Американская корпорация по обогащению урана (USEC) 7 в настоящее время ищет теплоноситель, который не содержит CFC. Но любые другие охладители все равно будут иметь тепловой улавливающий потенциал, и таким образом, даже если они не будут представлять опасность для озонового слоя, они все равно останутся потенциально опасными с точки зрения глобального потепления и изменения климата.

    Характерная особенность газодиффузионных установок - большое выделение тепла - позволяет выявить те из них, функционирование которых значительно превышает 100 MTЕРР в год. Однако подобная информация, скорее всего, будет значима лишь для выявления деятельности на известных установках, но не на нелегальных объектах, поскольку существует много других промышленных процессов с выделением больших объемов тепла. Следовательно, несмотря на то что такие обогатительные урановые производства, как газодиффузионные установки практически невозможно скрыть из-за их размеров, потребности в электроэнергии и тепловыделения, все-таки крайне сложно выявить какой-либо объект на расстоянии, не имея доступа к экологическим выборкам на прилегающих территориях (например, образцы почвы), которые могут убедительно указывать на присутствие обогащенного урана.

    Газовое центрифугирование

    В настоящее время газовое центрифугирование - основной метод обогащения урана в мире. Эта технология обсуждалась в США в рамках Манхэттенского проекта, однако для полномасштабного производства дальнейшее развитие получили такие методы, как газовая диффузия и электромагнитное разделение. Позднее метод центрифугирования был разработан в России группой специалистов под руководством австрийских и немецких ученых, попавших в плен во время второй мировой войны. Со временем руководитель научной группы в России был освобожден. Сначала он привез эту технологию в США, а затем в Европу, где приступил к внедрению этого метода для обогащения промышленного ядерного топлива.

    Центрифугирование - это распространенный метод, применяемый в различных целях, например, при отделении плазмы от более тяжелых красных клеток крови. Цикл вращения в стиральной машине работает по аналогичному центрифужному принципу. В процессе обогащения газообразный гексафторид урана подают в быстро вращающиеся цилиндры. Для достижения максимальной степени обогащения на каждой ступени современные центрифуги способны вращаться со скоростью, приближенной к скорости звука. Именно по этой причине управлять процессом центрифугирования крайне сложно, поскольку при высокой степени вращения необходимо, чтобы центрифуга была прочна, практически идеально сбалансирована и готова к эксплуатации в таком виде в течение многих лет без остановки на техническое обслуживание.

    Внутри вращающейся центрифуги более тяжелые молекулы, содержащие атомы U-238, преимущественно движутся по направлению к внешней стороне цилиндра, а более легкие молекулы, содержащие U-235, остаются ближе к центральной оси. Затем газ в этом цилиндре начинает циркулировать снизу вверх, продвигая обедненный уран, который находится ближе к внешней стенке, по направлению к верхней части, а газ, обогащенный U-235 - от центра по направлению к нижней части. Затем два потока, один обогащенный, а другой обедненный, можно извлечь из центрифуги и ввести на соседние ступени для формирования каскада, который описан выше, с диффузорами в газодиффузионных установках. Схема подобной центрифуги представлена на Рисунке 2.

    Подобно газодиффузионному процессу, обогащение урана с помощью газового центрифугирования требует от тысяч до десятков тысяч стадий, чтобы обогатить большие объемы урана в промышленных или военных целях. Кроме того, подобно газодиффузионным установкам, в центрифужных необходимо использовать специальные материалы для предотвращения коррозии, которую вызывает гексафторид урана и который, вступив в реакцию с влагой, может образовать высококоррозионный газ из фтористоводородной кислоты. Одним из наиболее важных преимуществ газового центрифугирования перед газодиффузионным процессом является то, что при достижении одинаковой степени обогащения на данный процесс уходит в 40-50 раз меньше электроэнергии. Использование центрифуг также помогает сократить объем использованного тепла, которое генерируется при сжатии газа UF 6 , и таким образом уменьшить количество требуемых для этого охладителей, таких как фреон.

    Несмотря на большую мощность разделения на каждой стадии по сравнению с газодиффузионным процессом, здесь, как правило, требуется намного меньше урана, который можно пропустить через каждую стадию в центрифуге за определенное время. Обычные современные центрифуги способны достигать примерно от 2 до 4 ЕРР ежегодно. Поэтому для обогащения достаточного объема оружейного ВОУ в год, который можно использовать при создании ядерного оружия, эквивалентного сброшенному на Хиросиму, потребуется от 3000 до 7000 центрифуг. Подобное производство способно потреблять от 580 000 до 816 000 кВ-ч электроэнергии, которую может обеспечить установка мощностью менее 100 киловатт. При создании современных видов оружия эти цифры могут сократиться до 1000-3000 центрифуг и 193 000-340 000 кВ-ч.

    Ожидается, что степень обогащения на каждой стадии в современных моделях центрифуг в десять раз превысит ту, что обеспечивают центрифуги, действующие в настоящее время. Это способно еще больше сократить затраты на производство ВОУ. Как сообщают источники, продажа старой модели европейской центрифуги в такие страны, как Ливия, Иран и Северная Корея через сеть, возглавляемую компанией A.Q. Khan, которая раньше руководила программой ядерного оружия в Пакистане, вызывает особое беспокойство с точки зрения ядерного распространения, поскольку центрифуги обладают меньшими габаритами и энергопотреблением в процессе обогащения.

    Электромагнитный метод разделения радиоактивных изотопов урана (EMIS)

    Электромагнитный метод разделения радиоактивных изотопов - это третий тип обогащения урана, который широко применялся в прошлом. Установка по электромагнитному разделению была разработана в рамках Манхэттенского проекта в городе Ок-Ридж, штат Теннеси. Этот метод применяли для обогащения природного урана и последующего обогащения урана, первоначально переработанном на газодиффузионном заводе, который также находился на комбинате в Ок-Ридже. Использование этой установки было приостановлено сразу после войны из-за ее дороговизны и низкой производительности.

    Ирак создал эту технологию в 1980-х годах в рамках своей программы по производству ВОУ из-за ее относительной простоты. Однако она производила лишь небольшие объемы среднеобогащенного урана (только выше 20%).

    Процесс электромагнитного разделения основан на том, что, двигаясь в магнитном поле, заряженная частица следует по криволинейной траектории, радиус которой зависит от массы частицы. Более тяжелые частицы будут проходить более широкий цикл по сравнению с более легкими частицами при условии, что эти частицы одинаково заряжены и двигаются с одинаковой скоростью.

    В процессе обогащения тетрахлорид урана ионизируют в плазму урана, то есть нагревают твердое соединение UCL 4 , и образуется газ, который затем облучают электронами для получения свободных атомов урана, которые потеряли электроны и становятся положительно заряженными. Затем ионы урана ускоряют и пропускают через сильное магнитное поле. После прохождения половины цикла, пучок ионизированных атомов урана разделяется на обедненную часть, расположенную ближе к внешней стенке, и на обогащенную U-235 часть, которая расположена ближе к внутренней стенке.

    Из-за большого энергопотребления при создании сильного магнитного поля, а также низкого темпа отбора исходного уранового вещества, к тому же более медленного и менее удобного функционирования такой установки, метод электромагнитного разделения неперспективен для обогатительных заводов промышленного масштаба, в особенности, в свете действующих на сегодняшний день высокоразвитых моделей газогенераторных центрифуг.

    Форсунка / Аэродинамическая сепарация

    Последний процесс обогащения урана, который получил широкое применение, называется аэродинамической сепарацией. Сначала этот способ был разработан в Германии и использован правительством Южной Африки во времена апартеида на заводе, который предположительно возвели для обеспечения низкообогащенным ураном южноафриканские промышленные АЭС, а также для получения небольшого количества высокообогащенного урана с целью обеспечения топливом исследовательского ядерного реактора. На самом деле этот обогатительный завод также поставлял примерно 400 килограммов урана, обогащенного более чем на 80% для военных целей. В начале 1990-х годов президент Южной Африки Фредерик де Клерк объявил о прекращении всей военной ядерной деятельности и уничтожении всех существующих бомб. Эти задачи были выполнены через полтора года - сразу после того, как Южная Африка стала участницей ДНЯО и перед тем, как начали действовать проверки и гарантии Международного агентства по атомной энергии.

    Аэродинамическая сепарация изотопов (куда входят форсунка и спиральная волна) достигает обогащения аналогичным образом, как и метод газового центрифугирования, в том смысле, что газ форсируют по криволинейной траектории, которая движет более тяжелые молекулы, содержащие U-238, по направлению к внешней стенке, а более легкие молекулы, содержащие U-235, остаются ближе к внутренней. В форсуночных установках, газ гексафторид урана вытесняется под давлением за счет гелия или водородного газа для увеличения скорости газового потока. Затем это соединение пропускают через множество маленьких трубочек круглого сечения, которые отделяют внутренний обогащенный поток от внешнего обедненного потока.

    Форсунка / аэродинамическая сепарация относится к числу менее экономичных из всех применяемых технологий обогащения, особенно с учетом наличия технических сложностей производства разделительных форсунок и большого энергопотребления при сжатии UF 6 и смеси газа-носителя. Как и в газодиффузионных установках, в ходе работы установки по аэродинамической сепарации также происходит генерирование больших объемов тепла, которые в свою очередь требуют большого количества таких как фреон охладителей.

    Другие технологии

    Существует ряд других способов обогащения урана. Это AVLIS - технология лазерного разделения изотопов в атомарной форме, MLIS - молекулярный метод лазерного разделения изотопов, CRISLA - химическая реакция через избирательную изотопную лазерную активацию, а также химическое и ионное обогащение, которые также были разработаны, однако в основном пока находятся в стадии испытаний или демонстрации и не применялись для обогащения урана в промышленных или военных целях.

    Такие процессы, как AVLIS, CRISLA и MLIS используют незначительную разницу в атомных свойствах U-235 и U-238 для того, чтобы с помощью мощных лазеров преимущественно возбуждать или ионизировать один изотоп над другим. В методе AVLIS используют урановый металл в качестве исходного вещества, а также электростатические поля для отделения положительно заряженных ионов U-235 от незаряженных атомов U-238. В технологиях MLIS и CRISLA в качестве исходного вещества применяют гексафторид урана, соединенный с другими технологическими газами, а также используют два различных лазера с тем, чтобы возбудить, а затем химически изменить молекулы гексафторида урана, содержащие U-235, которые затем можно отделить от других молекул, содержащих U-238, не подвергшихся воздействию лазера. Технология AVLIS была разработана Американской корпорацией по обогащению урана для промышленного применения, однако в конце 1990-х годов от нее отказались из-за ее нерентабельности. При этом в других странах также прекратили применять все известные производственные программы с технологиями AVLIS и MLIS. Однако небольшая работа все же идет на предполагаемых исследовательских объектах, где применяют данные технологии по изотопному разделению урана, а также других радионуклидов, включая плутоний.

    Существует также метод обогащения, который использует небольшую разницу в химических свойствах изотопов для отделения U-235 от U-238. Это так называемые химический и ионный процессы обогащения, которые были разработаны в рамках программ правительства Франции и Японии. С помощью специальных растворов уран можно разделить на обогащенную часть, которая содержится в одном потоке растворителя, и обедненную часть, содержащуюся в другом потоке растворителя, который не смешивается с первым - так же как масло и вода. Эта технология обогащения была применена в Ираке. На сегодняшний день все известные программы, включающие и этот способ, закрыты, как минимум, с начала 1990-х годов.

    Все эти технологии обогащения демонстрировались не очень широко, хотя некоторые из них, такие как AVLIS, ушли значительно дальше в своей разработке, что способно повысить их до уровня применения на производственных объектах. Потенциальное применение подобных альтернативных технологий при обогащении урана в нелегальных программах продолжает вызывать опасения, в особенности, если вопрос рентабельности установки не стоит остро, и она предназначена лишь для получения довольно небольшого количества ВОУ, необходимого для одной - двух бомб в год. Однако на сегодняшний день основной технологией промышленного обогащения урана в перспективе для атомной энергетики и потенциального распространения ядерного оружия остается газовое центрифугирование.