• Из чего состоит гумус в почве. Состав и свойства гумуса

    Глава 4. ОРГАНИЧЕСКОЕ ВЕЩЕСТВО ПОЧВЫ И ЕГО СОСТАВ

    §1. Источники органического вещества и его состав

    Важнейшей составляющей частью почвы является органическое вещество, которое представляет собой сложное сочетание растительных и животных остатков, находящихся на различных стадиях разложения, и специфических почвенных органических веществ, называемых гумусом.

    Потенциальным источником органического вещества считают все компоненты биоценоза, которые попадают на или в почву (отмирающие микроорганизмы, мхи, лишайники, животные и т.д.), но основным источником накопления гумуса в почвах служат зеленые растения, которые ежегодно оставляют в почве и на ее поверхности большое количество органического вещества. Биологическая продуктивность растений широко варьирует и находится в пределах от 1– 2 т/год сухого органического вещества (тундра) до 30 – 35 т/год (влажные субтропики).

    Растительный опад различается не только количественно, но и качественно (см. главу 2). Химический состав органических веществ, поступающих в почву, очень разнообразен и во многом зависит от типа отмерших растений. Большую часть их массы составляет вода (75 – 90 %). В состав сухого вещества входят углеводы, белки, жиры, воски, смолы, липиды, дубильные вещества и другие соединения. Подавляющее большинство этих соединений – высокомолекулярные вещества. Основная часть растительных остатков состоит главным образом из целлюлозы, гемицеллюлозы, лигнина и дубильных веществ, при этом наиболее богаты ими древесные породы. Белка больше всего содержится в бактериях и бобовых растениях, наименьшее его количество обнаружено в древесине.

    Кроме того, органические остатки всегда содержат некоторое количество зольных элементов. Основную массу золы составляют кальций, магний, кремний, калий, натрий, фосфор, сера, железо, алюминий, марганец, образующие в составе гумуса органоминеральные комплексонаты. Содержание кремнезема (SiO 2) колеблется от 10 до 70 %, фосфора – от 2 до 10 % массы золы. Название зольных элементов связано с тем, что при сжигании растений они остаются в золе, а не улетучиваются, как это происходит с углеродом, водородом, кислородом и азотом.

    В весьма малом количестве в золе встречаются микроэлементы – бор, цинк, йод, фтор, молибден, кобальт, никель, медь и др. Наиболее высокой зольностью обладают водоросли, злаковые и бобовые растения, меньше всего золы содержится в древесине хвойных пород. Состав органического вещества можно представить следующим образом (рис.6).

    §2. Трансформация органического вещества в почве

    Превращение органических остатков в гумус – сложный биохимический процесс, совершающийся в почве при непосредственном участии микроорганизмов, животных, кислорода воздуха и воды. В этом процессе главная и решающая роль принадлежит микроорганизмам, которые участвуют во всех этапах образования гумуса, чему способствует огромная населенность почв микрофлорой. Животные, населяющие почву, тоже активно участвуют в превращении органических остатков в гумус. Насекомые и их личинки, дождевые черви измельчают и перетирают растительные остатки, перемешивают их с почвой, заглатывают, перерабатывают и выбрасывают неиспользованную часть в виде экскрементов в толщу почвы.

    Отмирая, все растительные и животные организмы подвергаются процессам разложения до более простых соединений, конечной стадией которых является полная минерализация органического вещества. Образовавшиеся неорганические вещества используются растениями как элементы питания. Скорость процессов разложения и минерализации различных соединений неодинакова. Интенсивно минерализуются растворимые сахара, крахмал; достаточно хорошо разлагаются белки, гемицеллюлозы и целлюлоза; устойчивы – лигнин, смолы, воски. Другая часть продуктов разложения потребляется самими микроорганизмами (гетеротрофными) для синтеза вторичных белков, жиров, углеводов, образующих плазму новых поколений микроорганизмов, а после отмирания последних снова подвергается процессу разложения. Процесс временного удержания органического вещества в микробной клетке называется микробным синтезом . Часть продуктов разложения превращается в специфические сложные высокомолекулярные вещества – гумусовые вещества. Совокупность сложных биохимических и физико-химических процессов превращения органического вещества, в результате которых образуется специфическое органические вещество почвы – гумус, называется гумификацией. Все три процесса идут в почве одновременно и взаимосвязаны друг с другом. Трансформация органического вещества происходит при участии ферментов, выделяемых микроорганизмами, корнями растений, под влиянием которых осуществляются биохимические реакции гидролиза, окисления, восстановления, брожения и т.д. и образуется гумус.

    Существует несколько теорий гумусообразования. Первой в 1952 году появилась конденсационная теория, разработанная М.М.Кононовой. В соответствии с этой теорией образование гумуса идет как постепенный процесс поликонденсации (полимеризации) промежуточных продуктов разложения органических веществ (сначала образуются фульвокислоты, а из них – гуминовые). Концепция биохимического окисления разработана Л.Н.Александровой в 70-е годы XX в. Согласно ей, ведущее значение в процессе гумификации имеют реакции медленного биохимического окисления продуктов разложения, в результате которых образуется система высокомолекулярных гумусовых кислот переменного элементного состава. Гумусовые кислоты вступают во взаимодействие с зольными элементами растительных остатков, освобождающимися в процессе минерализации последних, а также с минеральной частью почвы, образуя различные органо-минеральные производные гумусовых кислот. При этом происходит расщепление единой системы кислот на ряд фракций, различных по степени растворимости и строению молекулы. Менее дисперсная часть, образующая с кальцием и полуторными оксидами нерастворимые в воде соли, формируется как группа гуминовых кислот. Более дисперсная фракция, дающая преимущественно растворимые соли, образует группу фульвокислот. Биологические концепции гумусообразовапия предполагают, что гумусовые вещества – продукты синтеза различных микроорганизмов. Данная точка зрения была высказана В.Р.Вильямсом, она получила развитие в работах Ф.Ю.Гельцера, С.П.Ляха, Д.Г.Звягинцева и др.

    В различных природных условиях характер и скорость гумусообразования неодинаковы и зависят от взаимосвязанных условий почвообразования: водно-воздушного и теплового режимов почвы, её гранулометрического состава и физико-химических свойств, состава и характера поступления растительных остатков, видового состава и интенсивности жизнедеятельности микроорганизмов.

    Трансформация остатков происходит в аэробных или анаэробных условиях в зависимости от водно-воздушного режима. В аэробных условиях при достаточном количестве влаги в почве, благоприятной температуре и свободном доступе О 2 процесс разложения органических остатков развивается интенсивно при участии аэробных микроорганизмов. Наиболее оптимальными условиями являются температура 25 – 30 °С и влажность – 60 % от полной влагоемкости почвы. Но в этих же условиях быстро идет минерализация как промежуточных продуктов разложения, так и гумусовых веществ, поэтому в почве накапливается относительно мало гумуса, но много элементов зольного и азотного питания растений (в сероземах и других почвах субтропиков).

    В анаэробных условиях (при постоянном избытке влаги, а также при низких температурах, недостатке О 2) процессы гумусообразования идут медленно при участии, главным образом, анаэробных микроорганизмов. При этом образуются много низкомолекулярных органических кислот и восстановленные газообразные продукты (СН 4 , H 2 S), угнетающие жизнедеятельность микроорганизмов. Процесс разложения постепенно затухает, и органические остатки превращаются в торф – массу слаборазложившихся и неразложившихся растительных остатков, частично сохранивших анатомическую структуру. Наиболее благоприятны для накопления гумуса сочетание в почве аэробных и анаэробных условий с чередованием периодов иссушение и увлажнения. Такой режим характерен для черноземов.

    Видовой состав почвенных микроорганизмов и интенсивность их жизнедеятельности также влияют на образование гумуса. Северные подзолистые почвы в результате специфических гидротермических условий характеризуются наименьшим содержанием микроорганизмов с небольшим видовым разнообразием и низкой жизнедеятельностью. Следствием этого является медленное разложение растительных остатков и накопление слаборазложенного торфа. Во влажных субтропиках и тропиках отмечаются интенсивное развитие микробиологической деятельности и в связи с этим активная минерализация остатков. Сопоставление запасов гумуса в различных почвах с разным количеством микроорганизмов в них свидетельствует о том, что как очень слабая, так и высокая биогенность почвы не способствует накоплению гумуса. Наибольшее количество гумуса накапливается в почвах со средним содержанием микроорганизмов (черноземы).

    Гранулометрический состав и физико-химические свойства почвы имеют не менее значительное влияние. В песчаных и супесчаных хорошо прогреваемых и аэрируемых почвах разложение органических остатков идет быстро, значительная часть их минерализуется, гумусовые веществ мало и они плохо закрепляются на поверхности песчаных частиц. В глинистых и суглинистых почвах процесс разложения органических остатков при равных условиях происходит медленнее (из-за недостатка О 2), гумусовых вещества закрепляются на поверхности минеральных частиц и накапливаются в почве.

    Химический и минералогический состав почвы определяет количество питательных веществ, необходимых для микроорганизмов, реакцию среды, в которой идет образование гумуса, и условия для закрепления гумусовых веществ в почве. Так, почвы, насыщенные кальцием, имеют нейтральную реакцию, которая благоприятна для развития бактерий и закрепления гуминовых кислот в виде нерастворимых в воде гуматов кальция, что обогащает ее гумусом. В кислой среде при насыщенности почв водородом и алюминием образуются растворимые фульвокислоты, которые имеют повышенную подвижность и ведут к большому накоплению гумуса. Закреплению гумуса в почве способствуют также глинистые минералы типа монтмориллонита и вермикулита.

    В связи с различием в факторах, влияющих на образование гумуса, в разных почвах количество, качество и запасы гумуса неодинаковы. Так, в верхних горизонтах черноземов типичных содержится 10 – 14 % гумуса, серых темных лесных – 4 – 9 %, дерново-подзолистых – 2 – 3 %, темных каштановых, желтоземах – 4 – 5 %, бурых и серо-бурых полупустынных – 1 – 2 %. Запасы органического вещества в природных зонах также различны. Наибольшие запасы, по данным И.В.Тюрина, имеют различные подтипы черноземов, торфяники, серые лесные, средние – темно-каштановые, красноземы, низкие – подзолистые, дерново-подзолистые, сероземы типичные. В пахотных почвах Республики Беларусь содержится гумуса: в глинистых – 65 т/га, в суглинистых – 52 т/га, в супесчаных – 47 т/га, в песчаных – 35 т/га. Почвы Республики Беларусь в зависимости от содержания гумуса в пахотном слое делятся на 6 групп (табл. 3). В почвах других природных зон существуют свои градации в зависимости от содержания гумуса.

    Таблица 3

    Группировка почв Республики Беларусь по содержанию гумуса

    Группы почв

    % органического вещества (от веса почвы)

    очень низкое

    повышенное

    очень высокое

    В Республике Беларусь большая часть земель относится к почвам II и III групп, около 20 % – к почвам IV группы (рис. 7).

    §3. Состав и классификация гумуса

    Гумус – это специфическое высокомолекулярное азотсодержащее органическое вещество кислотной природы. Составляет главную часть органического вещества почвы, которая полностью утратила черты анатомического строения отмерших растительных и животных организмов. Почвенный гумус состоит из специфических гумусовых веществ, включающих гуминовые кислоты (ГК), фульвокислоты (ФК) и гумин (см. рис. 6), которые отличаются по растворимости и экстрагируемости.

    Гуминовые кислоты – это нерастворимые в воде, минеральных и органических кислотах темноокрашенные высокомолекулярные азотсодержащие вещества. Они хорошо растворяются в щелочах с образованием коллоидных растворов темно-вишневой или коричнево-черной окраски.

    При взаимодействии с катионами металлов гуминовые кислоты образуют соли – гуматы. Гуматы одновалентных металлов хорошо растворимы в воде и вымываются из почвы, а гуматы двух- и трехвалентных металлов в воде не растворяются и хорошо закрепляются в почвах. Средняя молекулярная масса гуминовых кислот равна 1400. Они содержат С – 52 – 62 %, Н – 2,8 – 6,6 %, О – 31 – 40 %, N – 2 – 6 % (по массе). Основные компоненты молекулы гуминовой кислоты – ядро, боковые цепи и периферические функциональные группы. Ядро гуминовых веществ состоит из ряда ароматических циклических колец. Боковыми цепями могут быть углеводные, аминокислотные и другие цепочки. Функциональные группы представлены несколькими карбоксильными (–СООН) и фенолгидроксильными группами, которые играют важную роль в почвообразовании, так как обусловливают процессы взаимодействия гуминовых кислот с минеральной частью почвы. Гуминовые кислоты составляют наиболее ценную часть гумуса, они увеличивают поглотительную способность почвы, способствуют накоплению элементов почвенного плодородия и образованию водопрочной структуры.

    Фульвокислоты – это группа гумусовых кислот, остающаяся в растворе после осаждения гуминовых кислот. Это также высокомолекулярные органические азотсодержащие кислоты, в которых в отличие от гумусовых кислот содержится меньше углерода, но больше кислорода и водорода. Имеют светлую окраску (желтую, оранжевую), хорошо растворимы в воде. Соли (фульваты) также растворимы в воде и слабо закрепляются в почве. Фульвокислоты обладают сильнокислой реакцией, энергично разрушают минеральную часть почвы, вызывая развитие почвенного подзообразовательного процесса.

    Соотношение между гуминовыми кислотами и фульвокислотами в разных почвах неодинаково. В зависимости от этого показателя (С ГК: С ФК) различают следующие типы гумуса: гуматный (> 1,5), гуматно-фульватный (1,5 – 1), фульватно -гуматный (1 – 0,5), фульватный (< 0,5). Качество гумуса, плодородие почвы зависят от преобладания той или иной группы. К северу и к югу от черноземов содержание гуминовых кислот в почвах уменьшается. Относительно высокое содержание фульвокислот наблюдается в гумусе подзолистых почв и красноземов. Можно сказать, что условия, благоприятствующие накоплению гумуса в почвах, способствуют и накоплению устойчивой и наиболее агрономически ценной его части – гуминовых кислот. Соотношение С ГК: С ФК имеет наибольшее значение (1,5 – 2,5) в гумусе черноземов, снижаясь к северу и к югу от зоны этих почв. При интенсивном использовании пахотных земель без достаточного внесения органических удобрений наблюдается снижение как общего содержания гумуса (дегумификация), так и гуминовых кислот.

    Гумин – это часть гумусовых веществ, которые не растворяются ни в одном растворителе, представлены комплексом органических веществ (гуминовые кислоты, фульвокислоты и их органо-минеральные производные), прочно связанных с минеральной частью почвы. Это инертная часть почвенного гумуса.

    Специфичность и состав гумусовых комплексов служит основой классификации типов гумуса. Р.Е.Мюллером предложена классификация лесных форм гумуса как биологической системы взаимодействия органических веществ, микробиоты и растительности. Среди этих комплексов выделяются 3 типа гумуса.

    Мягкий гумус – муль образуется в лиственных или смешанных лесах с интенсивной деятельностью почвенной фауны при благоприятных гидротермических условиях и наличии достаточного количества оснований, прежде всего кальция, в подстилках и почвах, имеет слабокислую реакцию, равномерно пропитывает минеральную часть почвы и легко подвергается минерализации. В мулевых почвах почти не накапливается подстилка, так как поступающий опад энергично разлагается микробиотой. В составе гумуса преобладают гуминовые кислоты.

    Грубый гумус – мор , содержащий большое количество полуразложившихся остатков, характерен для хвойных лесов, образуется при малом содержании зольных элементов в опаде, недостатке оснований и высоком содержании кремнезема в почве, имеет кислую реакцию, устойчив к воздействию микроорганизмов, минерализуется медленно при участии грибов. В результате медленного развития процессов гумификации и минерализации в почвах образуется мощный подстилочный торфообразный горизонтA 0 , состоящий из 3 слоев: а) слоя слаборазложившегося органического вещества (L), представляющего собой свежий опад, б) полуразложившегося ферментационногослоя (F), в) гумифицированного слоя (H).

    Промежуточная форма – модер развивается в условиях достаточно быстрой минерализации растительных остатков, где значительную роль играет функциональная деятельность почвенных животных, измельчающих растительные остатки, что значительно облегчает их последующее разложение почвенной микрофлорой.

    §4. Значение и баланс гумуса почвы

    Накопление гумуса является результатом почвообразовательного процесса, одновременно сами гумусовые вещества оказывают большое влияние на дальнейшее направление процесса почвообразования и свойства почвы. Функции гумуса в почве очень разнообразны:

    1) формирование специфического почвенного профиля (с горизонтом А), образование структуры почв, улучшение водно-физических свойств почвы, увеличение поглотительной способности и буферности почв;

    2) источник минеральных элементов питания для растений (N, P, K, Ca, Mg, S, микроэлементы), источник органического питания гетеротрофных почвенных организмов, источник СО 2 в приземном слое атмосферы и биологически активных соединений в почве, что непосредственно стимулирует рост и развитие растений, мобилизирует элементы питания, влияет на биологическую активность почвы;

    3) выполняет санитарно-защитные функции – ускоряет разрушение пестицидов, закрепляет загрязняющие вещества, снижая поступление их в растения.

    В связи с разнообразной ролью органического вещества в плодородии почв актуальное значение приобретает проблема гумусового баланса пахотных почв. Как и любой баланс, гумусовый баланс включает статьи прихода (поступление органических остатков и их гумификация) и расхода (минерализация и другие потери). В естественных условиях почва чем старше, тем плодороднее: баланс положительный или нулевой, в пахотных почвах чаще – отрицательный. В среднем пахотные почвы теряют около 1 т/га гумуса в год. Для регулирования количества гумуса применяют систематическое внесение достаточного количества органического вещества в виде навоза (из 1 т навоза образуется ≈ 50 кг гумуса), торфяных компостов, посев многолетних трав, применение зеленых удобрений (сидератов), известкование кислых почв и гипсование щелочных.

    Гумусное состояние почв служит важным показателем плодородия и определяется системой показателей, включающих уровень содержания и запасы органического вещества, его профильное распределение, обогащенность азотом (С: N) и кальцием, степень гумификации, типы гумусовых кислот и их соотношение. Отдельные его параметры служат объектом мониторинга окружающей среды.

    Гумус - слово латинское, буквально оно переводится как земля, почва. В почвоведении этим термином обозначают специфическую группу высокомолекулярных темноокрашенных веществ, образующихся в процессе разложения органических остатков в почве. Эти соединения синтезируются из продуктов распада и гниения отмерших растительных и животных тканей.

    Тот, кто хоть раз копал землю, знает, что верхний слой почвы более темный, чем нижние горизонты. В нем много мелких корешков и перегноя - размельченных полуразложившихся растительных остатков, перемешанных с минеральной почвой. Все эти остатки, перегнивающие в почве,- материал, из которого при участии почвообитающих микроорганизмов и животных формируются новые органические соединения, очень устойчивые, в которых сосредоточено большое количество элементов минерального питания растений. Это и есть гумус.

    В разных природных областях гумусированный слой почвы имеет разную глубину и окраску. Например, в Подмосковье он темно-серого цвета, толщиной всего несколько сантиметров. А в тучных черноземах Украины гумусовый горизонт черный, его мощность более метра.

    Плодородие почвы зависит от наличия в ней необходимых питательных веществ в доступной для растений форме. Гумусовые соединения - это резерв питательных элементов. Они очень медленно разлагаются, переходят в формы, доступные для растений и полностью поглощаются корнями. За счет гумуса почва способна давать стабильные урожаи в течение длительного времени. Постепенно этот резерв истощается, и если новообразование гумуса по каким-либо причинам идет медленнее, чем его трата, урожайность начинает снижаться, что мы и наблюдаем на землях, которые интенсивно эксплуатируются и при этом неправильно обрабатываются и удобряются.

    Почвенный гумус - это комплекс разных химических соединений, в котором выделяют несколько групп, различающихся по химическому составу, свойствам, степени устойчивости в почве. Например, темную окраску ему придают гуминовые кислоты, наиболее устойчивые и долго живущие в почве компоненты гумуса. В черноземных почвах их содержание очень высоко. А в подзолистых преобладают так называемые серые гуминовые кислоты - фульвокислоты - более подвижные, быстрее разлагающиеся в почве. Поэтому-то в Нечерноземной зоне гумусовый горизонт светлый и маломощный.

    Процессы гумификации очень сложны, их скорость и характер определяются многими причинами: ландшафтно-климатическими условиями, составом растительности, микробным и животным населением почвы. Превращение остатков растений в перегной связано с измельчением растительных тканей и перемешиванием их с минеральными частицами. На этом этапе большую роль играют почвенные животные, питающиеся такими остатками и роющие подземные ходы и норы.

    Отмершие части растений сначала становятся добычей крупных беспозвоночных, которые отрывают, размельчают и растирают большие частицы. В мертвых растительных тканях много клетчатки и лигнина. Эти соединения очень медленно разлагаются в почве и плохо перевариваются в кишечнике животных, но после переработки в кишечном тракте беспозвоночных они сильно размельчаются и обогащаются выделениями. Затем в земле их быстро заселяет почвенная микрофлора, продолжая дальнейшее разрушение и разложение. Некоторые группы животного населения почвы способны к очень активному разложению клетчатки с помощью симбиотических микроорганизмов. К ним относятся, например, мокрицы, многоножки, слизни, улитки, личинки многих насекомых.

    При отсутствии животных разрушение растительных тканей резко замедляется. Отмершие корни люцерны, например, длительное время сохраняют свою структуру, а если заселить их личинками мушек-сциарид, то всего за несколько дней превращаются в аморфную темную массу. Существует тесная связь между обилием почвенных животных и активностью гумусообразовання.

    Для формирования высококачественного гумуса важное условие - достаточная аэрация почвы. Животные же постоянно формируют систему ходов, которые постоянно прочищаются и поддерживаются их обитателями. Эта система ходов создает вентиляцию и обеспечивает проникновение кислорода в глубокие горизонты почвы, и благодаря этому там могут развиваться аэробные процессы.

    Деятельность животных оказывает также известное влияние, на кислотность почвы. Например, дождевые черви в процессе обмена веществ выделяют большое количество углекислого кальция. При высокой численности червей этот кальций существенно изменяет кислотность почвы, приближая ее к нейтральной реакции. Некоторые многоножки и мокрицы имеют толстый хитиновый панцирь, пропитанный кальцием.

    Во время линек или после гибели насекомых их панцири разрушайся, и кальций включается в обменные почвенные процессы. В лесостепных дубравах, где многоножки-диплоподы очень многочисленны, поступление кальция из их панцирей составляет до 50 кг на гектар в год.

    Многие почвенные животные в ходе обмена веществ выделяют ряд активных соединений, которые непосредственно участвуют в реакциях, ведущих к формированию гумусовых веществ. Среди микроорганизмов важнейшее значение в формировании гумуса имеют бактерии, актиномицеты, микроскопические грибы. В клетках некоторых актиномицетов образуются специфические темноокрашенные соединения, молекулы которых при взаимодействии друг с другом формируют гумусовые вещества. Актиномицеты способны синтезировать фульвокислоты. Такие широко распространенные в почве грибки, как пенициллы и аспергиллы, участвуют в начальных стадиях гумификации растительных остатков.

    Микроорганизмы осуществляют и разложение гумуса в почве. Это - плесневые грибки, актиномицеты, дрожжи, термофильные бактерии. Разложение и минерализация гумуса ускоряются при недостатке органического материала, богатого азотом.

    Ученые-почвоведы различают разные типы гумуса, отличающиеся по своим свойствам и особенностям формирования. Наиболее низкокачественный гумус - так называемый сырой или грубый кислый гумус - «мор». Он образуется при низких температурах, избытке влаги или в бедных почвах. Мор содержит много полуразложившихся растительных остатков. Основные агенты его формирования - грибы. Нужно отметить, что грибы выделяют вещества, создающие кислую реакцию почвы. Тем самым они препятствуют поселению животных и замедляют темпы размельчения растительных тканей. В результате в гумифицированной массе остается много крупных частиц, богатых лигнином и клетчаткой, удерживающих большое количество элементов питания, что делает такой гумус малопродуктивным.

    Тонкое размельчение растительных остатков животными, выделение ими слизистых и щелочных продуктов в массу разлагающейся органики приводят к образованию тонкозернистого высококачественного «сладкого гумуса», или «мулля». Мулль формируется в почвах при высоком обилии дождевых червей. Большое значение имеет выделение червями слизи, склеивающей органические и минеральные частицы. Из них формируются устойчивые водопрочные почвенные агрегаты, которые долгое время не распадаются и образуют зернистую структуру почвы.

    Существуют и другие переходные типы гумуса. Их формирование во многом зависит от состава и активности почвенных организмов и запаса органического материала в почве. На полях почва быстро истощается, содержание гумуса в ней снижается. А причина в том, что вместе с урожаем убирают и резерв органического материала, в котором аккумулированы продукты минерального питания растений. Уменьшается и количество животных, а вслед за этим снижается активность гумусообразования.

    В почве начинается минерализация имеющегося в ней запаса гумуса, а после его истощения происходит падение почвенной продуктивности (таяние гумуса). Внесение больших доз минеральных удобрений не может компенсировать снижения природного почвенного плодородия, поскольку растения усваивают лишь незначительную часть их. А избыточные концентрации удобрений в почвенном растворе и в сочных тканях растений снижают качество сельскохозяйственной продукции. Широкую печальную известность приобрели нитратные отравления овощами и фруктами, выращенными в условиях завышенных норм минеральных удобрений

    Для сохранения естественного почвенного плодородия и для повышения урожайности прежде всего необходимо внесение органических удобрений. Только они могут компенсировать потери органического материала, изымаемого при сборе урожая. Обогащение почвы органикой приводит и к активизации деятельности микроорганизмов и животных, участвующих в процессах гумификации, что также способствует формированию гумусового резерва и поддержанию его баланса.

    Для закрытого грунта, где интенсивно эксплуатируется небольшая земельная площадь, можно использовать «биогумус» - высококачественное органическое удобрение, полученное при переработке дождевыми червями разных органических остатков (навоз, отстойные илы и др.). Это - относительно дорогое удобрение, полученное в условиях промышленного культивирования червей, однако, это с лихвой окупится высокими урожаями экологически чистой продукции при сохранении биопотенциала почвы.

    Содержание гумуса в почвах, его типы, роль в почвообразовании и плодородии (расчёты запасов гумуса в почвах и их оценка по Орлову)

    Каждая почва состоит из органических, минеральных и органоминеральных комплексных соединений. Органические соединения почвы формируются в результате жизнедеятельности растений, животных и микроорганизмов. Неразложившиеся остатки растений и животных, которые видны в образце почвы невооруженным глазом или под лупой, составляют 5-10% общего содержания органического вещества неживой фазы большинства почв. Часть их полностью распадается до углекислоты, воды и простых солей в процессах минерализации. Другая часть преобразуется в сложные специфические органические вещества, называемые гумусовыми веществами. Совокупность специфических и неспецифических органических веществ, растительных и животных остатков разной степени разложения, кроме тех, которые еще не утратили тканевого строения, получило название гумуса или перегноя.

    Гумус - основная часть органического вещества почвы, полностью утратившая черты анатомического строения организмов. Гумус определяет плодородие почвы, причем важно не только его количественное содержание в почве, но и его качественный состав.

    Гумус состоит из 2 больших групп веществ:

    1) неспецифические органические соединения, которые могут быть выделены из почвы, идентифицированы и количественно определены (сахара, аминокислоты, белки, органические основания, дубильные вещества, органические кислоты и т. п.). В большинстве минеральных почв составляют единицы процентов общего содержания органического вещества;

    2) специфические гумусовые соединения - наиболее характерная специфическая часть, составляющая приблизительно 80-90 % общего содержании органического вещества в большинстве минеральных почв.

    Гумусовые вещества представляют собой смесь различных по составу и свойствам высокомолекулярных азотсодержащих органических соединений, объединенных общностью происхождения, некоторых свойств и чертами строения. Гумусовые вещества по растворимости и экстрагируемости делят на большие группы: фульвокислоты (ФК), гуминовые кислоты (ГК) и гумин; иногда выделяют особую группу гиматомелановых кислот.

    Фульвокислоты - наиболее растворимая группа гумусовых соединений, обладающая, высокой подвижностью, значительно более низкими молекулярными массами, чем средневзвешенные молекулярные массы гумусовых веществ в целом. Фульвокислоты имеют более светлую окраску, чем вещества других групп. Преобладают в почвах подзолистого типа, красноземах, некоторых почвах тропиков, сероземах.

    Гуминовые кислоты - нерастворимая в минеральных и органических кислотах группа гумусовых соединений. Имеют в среднем более высокие молекулярные массы, повышенное содержание углерода (до 62 %), менее выраженный кислотный характер. Преобладают в черноземах, каштановых почвах, иногда в серых лесных и хорошо окультуренных дерново-подзолистых.

    Гумин - неэкстрагируемая часть гумуса. Представлена двумя типами соединений: гумусовыми веществами, наиболее прочно связанными с глинистыми минералами (глиногумусовый гумин); частично разложившимися растительными остатками, утратившими анатомическое строение и обогащенными наиболее устойчивыми компонентами, прежде всего лигнином (детритный гумин)

    Гиматомелановые кислоты - группа гумусовых веществ с промежуточными свойствами между фульвокислотами и гуминовыми кислотами. Ранее включались в группу гуминовых кислот. Отличаются от последних растворимостью в полярных органических растворителях и другими свойствами.

    Содержание гумуса в верхних горизонтах разных почв варьирует в широких пределах - от 0,5-1 до 10-12 % и более. Сельскохозяйственное использование в условиях низкой культуры земледелия приводит к снижению уровня гумусированности. Соотношение между гуминовыми и фульвокислотами определяет качественную характеристику гумуса разных типов почв. Обычно учитывается, прежде всего, отношение углерода гуминовых кислот к углероду фульвокислот. В том случае, когда это отношение меньше 1, гумус называют фульватным, а когда отношение больше 1 - гуматным. В природном почвообразовании складывается закономерность, согласно которой при наиболее благоприятных условиях гумусонакопления формируется гумус, относительно обогащенный гуминовыми кислотами (черноземы, перегнойные почвы). Освоение и окультуривание почв в ряде случаев оказывают обычно неоднозначное влияние и на тип гумуса, изменяя его качественный состав.

    Запасы гумуса в почве определяют уровень её потенциального и эффективного плодородия. Запасы гумуса в почве принято выражать в тоннах на гектар (т/га) и рассчитывать в слое 0-20 (пахотный) и 0-100 см.

    ЗГ (т/га) = гумус (%) h d,

    где гумус (%) - содержание гумуса в слое почвы, %;

    h - мощность (толщина) слоя почвы, см;

    d - плотность слоя почвы, г/см 3 .

    Таблица 15. Оценка запасов гумуса в почве (по Д.С. Орлову, Л.А. Гришиной)

    I. Лугово-черноземные почвы:

    Таблица 16. Расчет запасов гумуса в лугово-черноземных почвах

    Горизонт

    Глубина, см

    Запасы гумуса в пахотном слое (0-20 см) очень высокие.

    Запасы гумуса в метровом слое (0-100 см) высокие.

    Лугово-черноземные почвы являются высокогумусными. Характеризуются глубоким проникновением гумуса по профилю, содержание которого постепенно снижается.

    II. Черноземы оподзоленные:

    Таблица 17. Расчет запасов гумуса в черноземах оподзоленных

    Горизонт

    Глубина, см

    Запасы гумуса в пахотном слое (0-20 см) высокие.

    Запасы гумуса в метровом слое (0-100 см) средние.

    Оподзоленные черноземы являются высоко- и среднегумусными. Изменение содержания гумуса по профилю происходит в них более плавно, чем в лугово-черноземных почвах.

    Вопрос «Понятие о гумусе. Состав гумуса, свойства гумусовых веществ. Фракционный состав гумуса и его качество. Содержание и состав гумуса в различных типах почв»

    Гумус – сложный комплекс органических соединений, который образуется в результате разложения и гумификации органических остатков.

    Значение гумуса:

    Является источником питания растений. При разложении образуются нитраты, фосфаты, сульфаты и др.;

    Гумус – стимулятор роста и развития растений и корневой системы;

    Улучшает азотное и кислородное питание, что способствует мощному развитию корней;

    Огромная роль в структурообразовании, что обуславливает водно-воздушные свойства;

    Обладает высокой поглотительной способностью и предотвращает от вымывания различные соединения, что дает возможность обменным реакциям при внесении удобрений;

    Гумус увеличивает буферность почвы;

    Огромная роль в формировании почвенного профиля.

    За последние 50-80 лет в Центрально-Черноземной области потери гумуса составляют 20-30 %; на Украине- 20 %; в Бразилии – 3-4 %; в США – ниже естественного уровня. В нашей зоне в пахотном слое ежегодно теряется 500-800 кг\га гумуса (около 1% за 50 лет). Потери 1 % гумуса приводит к потере урожая до 2 ц\га. Поэтому, чтобы управлять процессами гумусообразования необходимо знать его образование, состав, качество и др.

    Источниками гумуса являются остатки высших растений, низших, микроорганизмов и животных, населяющих почву.

    Основную роль в образовании гумуса играют микроорганизмы. Растительные остатки под влиянием ферментов, микроорганизмов, кислорода, углекислого газа, воды разлагаются до промежуточных продуктов (белки – в аминокислоты, жиры – в глицерин, лигнин – в фенолы). Затем промежуточные продукты под воздействием тех же факторов разлагаются с одновременным протеканием 3-х процессов:

    1) минерализация, которая приводит к созданию более простых соединений (аммиак, кислород, углекислый газ и др.), которые вымываются из почвенного профиля или используются растениями;

    2) микробный синтез происходит под влиянием гетеротрофных организмов, которые используют органические соединения для построения своей плазмы;

    3) гумификация – сложный процесс синтеза, устойчивых против разложения перегнойных веществ.

    Состав гумуса

    Гумус состоит из ГК (ульминовых), ФК (креновых и апокреновых), негидролизуемого остатка (гумина).

    ГК – это группа высокомолекулярных азотсодержащих кислот циклического строения кислой природы. Они имеют черный или темно-бурый цвет, нерастворимые в воде и кислотах, но растворимы в слабых щелочах. Элементарный состав ГК представлен С (52-62 %), О 2 (31-39 %), Н (2,5-5,8%), N (2,6-5,1 %). ГК содержат в себе карбоксильную, метоксильную и гидроксильную группы. Благодаря этим группам ГК обладают высокой поглотительной способностью обменивать активные свои группы на катионы. С катионами ГК дают соли – гуматы. Одновалентные катионы создают растворимые в воде соли, способные вымываться. С 2-х и 3-х валентными катионами – нерастворимые соединения, вызывают коагуляцию, участвуют в формировании водопрочной структуры. Е=250-700 мг-экв\100 г почвы.

    ФК - это группа высокомолекулярных азотсодержащих кислот циклического строения кислой природы. В отличие от ГК меньше содержат С и больше кислорода. Элементарный состав ФК представлен С (44-50 %), О 2 (42-48 %), Н (4-6 %). Они имеют соломенно-желтый цвет, растворимые во всем. В почвах находятся в свободном состоянии и в подвижном и связанных с несиликатными соединениями. Имеют функциональные группы. С катионами образуют соли – фульваты, которые растворимы в воде независимо от валентности.

    Гумины – это те же ГК и ФК, но прочно связанные с минеральной частью почвы. Могут растворяться в сильных кислотах.

    По соотношению С гуминовых кислот к С фульвокислот судят о качестве гумуса.

    В таежно-лесной зоне, северной части лесостепи Сгк\Сфк<1, в южной части лесостепи, степи соотношение равно 1 или более 1, у черноземов – около 2, в пустынях, полупустынях и засоленных почвах – менее 1. В нашей зоне ФК представлены низкомолекулярными соединениями ГК, которые не вызывают агрессивного разрушения минеральной части почв.

    Фракционный состав гумуса.

    Образуется 1-ая фракция гуминовых кислот (ГК) и фульвокислот (ФК), связанных с несиликатными формами полуторных окислов (Fе 2 О 3), т.е. это наиболее подвижные соединения в почве.

    2-ая фракция ГК и ФК, связанная с кальцием, происходит коагуляция, это более устойчивая фракция гумусовых кислот.

    3-я фракция ГК и ФК связана с устойчивыми глинистыми соединениями в виде полуторных окислов алюминия и железа (45-60 %).

    ФК образуют фракцию 1а – это свободная, самая агрессивная фракция гумусовых кислот (рН=2,6-2,8). Она создает подзолистые почвы. Т.е. плодородие почвы зависит от качественного состава гумуса. У черноземов преобладает 2-ая и 3-я фракции.

    На процессы гумификации влияют следующие условия:

    1) водно-воздушный и тепловой режимы. Разложение органических остатков и образование гумуса происходит лучше всего при температуре 25-30 0 и влажности почвы 60-80 % ПВ.

    2) Состав и характер растительных остатков.

    3)Видовой состав и интенсивность жизнедеятельности микроорганизмов.

    На севере видовой состав микроорганизмов однообразен и немногочислен. С продвижением на юг температурный режим усиливается, интенсивность микроорганизмов, количество и видовой состав.

    4) Свойства самой почвы.

    Подзолистые и дерново-подзолистые почвы – от 0,5 до 2,5-3, %

    Серые лесные почвы – 3-4 до 7-8 %

    Черноземы – 5-12 %

    Каштановые – 2-5 %

    Красноземы до 5-6 %

    Вопрос 2 «Структура и структурность почвы. Образование структуры. Пути разрушения и восстановления структуры почв. Факторы образования структуры. Показатели, характеризующие агрономически ценную структуру»

    1. Совокупность агрегатов различной величины, формы и качественного состава называют почвенной структурой.

    Способность почвы распадаться на агрегаты называют структурностью.

    Размеры, формы и свойства агрегатов зависят от условий почвообразования и характерной для каждого почвенного типа, а иногда отдельных горизонтов. Для черноземов – зернистая структура. Для солонцов горизонт В имеет столбчато-призматическую структуру, для серых лесных почв горизонт А 2 В 1 – ореховатая, подзолистые почвы – верхние горизонты бесструктурные, а горизонт В – имеет комковатую структуру.

    Структура играет огромную роль в плодородии почв (Докучаев, Костычев, Тюллин, Антипов-Каратаев и др.).

    Качественная оценка структуры определяется ее размерами, механической прочностью и пористостью. Агрономически ценная структура характеризуется: 1) размерами – от 0,25 до 10 мм или до 7 мм – для зоны с дефицитом влаги. Эту структуру называют мезоструктура. Макроструктура имеет размеры более 10 (7) мм, а микроструктура – менее 0,25 мм. По этим величинам можно рассчитать коэффициент структурности: К = количество мезоструктуры \ сумма макро- и микроструктуры; 2) Механическая прочность, т. е. агрегаты и комочки не должны разрушаться при многократных обработках орудиями; 3) Водопрочность – способность агрегатов противостоять разрушительным действиям воды; 4) Пористость – чтобы проникала и удерживалась в капиллярах влага. Пористость должна быть не более 45-50 %. И считают агрономически ценную структуру крупнопористую, т. к. тонкие поры снижают пористость до 30-40 %. Агрегаты находятся в плотной упаковке, куда трудно проникает вода и воздух.

    Агрономически ценная структура оказывает положительное влияние на свойства и режимы почвы. Определяет физические свойства (плотность, пористость); воздушный, водный, тепловой, О-В и питательный режимы. Структура определяет физико-механические свойства почвы – это связность, коркообразование, трение при обработке и противоэрозионную устойчивость почвы.

    Структура образуется в результате сложных биологических и физико-химических процессов. Условиями образования структуры являются 2 противоположно направленных процесса – это: 1) соединение или склеивание частиц почвы между собой; 2) разъединение отдельных участков склеенной массы почвы с образованием комочков не связанных между собой.

    Если действует только один из процессов, то образуется бесструктурная почва. Первый процесс образует слитную массу, а второй процесс вызывает дробление, диспергирование почвы.

    Чтобы образовалась структура, необходимы следующие факторы: 1) наличие в почве клеящих веществ, т. е. образование органических и минеральных коллоидов (илистые частицы и гумус). Органические соединения в 12 раз склеивают частицы прочнее, чем илистые; 2) наличие деятельного или свежего перегноя; 3) Качество гумуса с преобладанием гуминовых кислот, которые создают пористый характер почвенной массы. Преобладание фульвокислот образуют слитную массу; 4) Наличие цементирующего катиона в почве Са, который с гумусом образует необратимые формы соединений. Цементирующим фактором структуры являются полуторные окислы алюминия и железа (причем железо обладает большей прочностью); 5) периодическое промораживание и высушивание почвы, что вызывает обезвоживание коллоидов и необратимую коагуляцию; 6) Давление, которое возникает между верхними и нижними слоями; 7) большую роль в оструктуривании играют многолетние и однолетние травы, которые с одной стороны расчленяют слитную массу корнями, а с другой стороны отмирая обогащают деятельным гумусом и количество биомассы поступает больше, чем от культурных растений; 8) роль червей.

    Причины разрушения структуры: 1) в результате механического воздействия многократных обработок почвы, движения сельхоз машин; 2) биологическим путем, за счет жизнедеятельности гетеротрофных микроорганизмов, которые используют для своего питания углерод органических соединений, обедняют клеем веществом; 3) физико-химические процессы в почве при замене 2-х и 3-х валентных солей одновалентными, которые вызывают пептизацию и разрушение.

    Пути восстановления структуры: 1) рациональная и своевременная обработка почвы с учетом свойств и особенностей ее; 2) прекращение бессменного выгона скота на поля; 3) сбалансированное применение органических и минеральных удобрений; 4) введение в севообороты злаково-бобовых и многолетних трав. Многолетние травы в поверхностном слое оставляют после себя 4-18 т на га пожнивных и корневых остатков; 5) агрономические приемы (известкование, гипсование); 6) искусственное структурообразование, которое основывается на полиакритных полимерах.

    Вопрос «Понятие о поглотительной способности почв. Виды поглотительной способности почв и их характеристика»

    Поглотительная способность почв – это способность почвы поглощать различные вещества (твердые, пары воды и газы) из раствора, проходящего через нее и удерживать их.

    Это свойство почвы играет большую роль в питании растений и превращении внесенных удобрений. Благодаря поглотительной способности почва удерживает легкорастворимые соединения, элементы питания, гумусовые вещества. У разных почв поглотительная способность различна и зависит от содержания коллоидов. Связь между ними прямая.

    К.К. Гедройц различал пять видов поглотительной способности:

    1) биологическая

    2) механическая

    3) физическая

    4) химическая

    5) физико-химическая ли обменная

    Биологическая поглотительная способность связана с наличием в почве корней живых растений и микроорганизмов, которые избирательно поглощают из почвенного раствора необходимые элементы питания и переводят их в органические соединения своих тел. Тем самым эти питательные вещества предохраняются от вымывания из почвы (кальций, калий, нитраты, фосфаты и др.) и накапливаются в почве. После отмирания растений происходит постепенная их минерализация, содержащиеся в них питательные элементы переходят в доступную форму для новых поколений растений и микроорганизмов.

    По мнению Ковды растения на каждом гектаре поглощают и возвращают в почвы сотни килограммов химических элементов. Емкость поглощения корней растений колеблется от 10 до 80 мг-экв\100 г почвы. Бобовые растения более активные сорбенты, чем злаки.

    Биологическое поглощение зависит от: аэрации, влажности, состава органического вещества, служащего энергетическим материалом для микроорганизмов.

    Биологическим путем поглощаются катионы и анионы. Из катионов – это калий, сера, кальций, железо и др. Из анионов – хорошо поглощаются РО 4 кислот, частично – сульфаты и карбонаты, а хлориды и нитраты вообще не поглощаются без живых организмов. Биологическое поглощение играет особенно большую роль в превращении нитратных форм азота в почве (удобрения, содержащие нитратную группу лучше вносить весной – натриевая, калиевая, аммиачная, кальциевая селитр). А удобрения, содержащие хлор лучше вносить осенью (хлористый аммоний).

    Т.о., в зависимости от конкретных условий биологическое поглощение питательных веществ микроорганизмами может иметь положительное и отрицательное значение. Например, в паровых полях протекает процесс нитрификации, т.е. образование нитратного азота и этот азот не закрепляется в почве и в последствии вымывается. Но этими процессами можно регулировать – известкование кислых почв, внесение органических и минеральных удобрений и др.

    Механическая поглотительная способность – это способность почвы как пористого тела задерживать мелкие частицы из фильтрующихся суспензий. Задерживаются те частицы, диаметр которых больше, чем диаметр пор почвы. Чем тяжелее почвы по гранулометрическому составу, тем тоньше поры и выше механическое поглощение. Оно предотвращает от вымывания из почвы илистые и коллоидные частицы. Это поглощение способствует образованию новых почв (пойменных).

    Отрицательной значение – это заиливание почвенных пор, что ведет к заболачиванию.

    Механически в почве закрепляются нерастворимые в воде удобрения и мелиоранты (фосфоритная мука, известь, гипс).

    Физическая (молекулярная) поглотительная способность – это положительная или отрицательная адсорбция частицами почвы целых молекул растворенных веществ.

    Она зависит от суммарной поверхности твердых частиц. Чем больше в почве тонкодисперсных частиц, тем выше физическое поглощение. Оно происходит за счет сил поверхностного натяжения. За счет свободной энергии притягиваются целые молекулы паров, газа, растворенные в воде вещества и целые бактерии. При этом изменяется концентрация на поверхности этих частиц, но не меняется химический состав.

    На почвенных частицах удерживаются кислород, углекислый газ, азот, водород, пары воды, аммиак. Наиболее энергично поглощается вода и аммиак, менее – углекислый газ, кислород и азот. Энергия поглощения газов снижается в следующей последовательности: пары воды, аммиак, углекислый газ, кислород, азот.

    Физическое поглощение может быть положительным и отрицательным.

    Положительное наблюдается тогда, когда молекулы растворенного вещества притягиваются к почвенным частицам сильнее, чем молекулы воды. Так поглощаются многие органические кислоты, алкалоиды, высокомолекулярные органические соединения.

    Отрицательное физическое поглощение протекает у растворимых минеральных солей и неорганических кислот. Происходит обратный процесс. Молекулы воды закрепляются почвенными частицами сильнее, а растворенные вещества находятся в растворе (минеральные соли, кислоты, щелочи).

    Для удобрений известна отрицательная адсорбция аниона хлора и нитратного азота, что обуславливает их сильную подвижность в почве и возможность вымывания из верхних слоев почвы при высокой влагообеспеченности. Такое вымывание хлора, вредного для большинства растений (особенно картофеля, табака, цитрусовых), имеет положительное значение, а для нитратного азота оно нежелательно. Поэтому это необходимо учитывать при внесении удобрений.

    Физическая поглотительная способность имеет большое экологическое значение: 1) положительно сорбирует не только молекулы воды, но и молекулы газов и органических соединений, в том числе различных пестицидов, способствуя их закреплению и дальнейшему разложению; 2) на поверхности частиц удерживаются разные микроорганизмы. Различные почвы обладают неодинаковой способностью поглощать микроорганизмы. Чем тяжелее гранулометрический состав, чем больше гумуса, тем выше поглотительная способность по отношению к микроорганизмам. Бактерии при поглощении их почвой снижают свою биохимическую активность, благодаря чему улучшаются санитарные условия местности, очищаются воды колодцев и грунтовых вод.

    Химическая поглотительная способность (хемосорбция) обуславливает образование нерастворимых или труднорастворимых соединений в результате химических реакций между отдельными растворимыми солями в почве.

    Химическое поглощение зависит:

    1) от того, какие анионы находятся в почве. Анионы хлора и нитратный азот ни с какими катионами не образуют труднорастворимых соединений. Карбонаты и сульфаты с оновалентными катионами дают растворимые соли, а с 2-х и 3-х валентными – труднорастворимые. Фосфаты с одновалентными дают растворимые соли, а с 2-х и 3-х валентными – труднорастворимые.

    2) состава коллоидов и реакции среды. Чем больше в почве амфолитоидов и чем кислее реакция среды, тем сильнее выражено химическое поглощение аниона. Гумусовые вещества снижают интенсивность поглощения фосфатов.

    Химическая поглотительная способность имеет большое значение в закреплении почвами анионов фосфорной кислоты, органического вещества и катионов поливалентных металлов.

    Химическое поглощение проявляется при внесении фосфорных удобрений:

    Са(Н 2 РО 4) + Са(НСО 3) 2 2СаНРО 4 + 2Н 2 СО 3

    Суперфосфат

    Са(Н 2 РО 4) + 2Са(НСО 3) 2 Са 3 (РО 4) 2 + 4Н 2 СО 3

    (NН4) 2 НРО4 + Са(НСО 3) 2 СаНРО 4 + 2NН 4 НСО 3

    В кислых почвах, содержащих много полуторных окислов, химическое поглощение идет с образованием труднорастворимых фосфатов железа и алюминия. Учитывая свойство РО 4 3- закрепляться химически необходимо вносить фосфора в почву больше, чем нужно растениям (в гранулированной форме).

    Физико-химическая или обменная поглотительная способность – способность почвенных коллоидов обменивать свои ионы на ионы почвенного раствора.

    Обменные реакции в основном протекают с катионами, т.к. коллоиды заряжены отрицательно. Если базоиды, то обмен происходит анионами.

    Например:

    ППК 2Nа + СаSО 4 ППК Са + Nа 2 SО 4 (растворимая соль)

    ППК 2Н + СаСО 3 ППК Са + Н 2 СО 3 (Н 2 О и СО 2)

    ППК Са + 2NН 4 NО 3 ППК 2NН 4 + Са(NО 3) 2

    Физико-химическое поглощение имеет ряд закономерностей:

    1) Обмен происходит в строго эквивалентных количествах по законам обменных химических реакций;

    2) Реакция обмена катионов происходит быстро (за 3-5 мин сорбируется 85 % катионов – по Гедройцу), но для установления динамического равновесия между катионами почвенного раствора и диффузного слоя необходимо 1-3 суток.

    3) Любой поглощенный катион может быть вытеснен и заменен другим катионом почвенного раствора;

    4) Энергия обменного поглощения различных катионов зависит от валентности, а при одинаковой валентности – от атомной массы иона. Она увеличивается с увеличением валентной и атомной массы. Исключением является водород, который хотя и имеет меньшую атомную массу, обладает высокой энергией поглощения и вытесняет другие катионы.

    Li

    внедрение вытеснение

    5) Обменное поглощение – процесс в основном обратимый.

    6) Интенсивность поглощения катионов зависит от концентрации раствора. Чем ниже концентрация, тем более активно поглощение катионов.

    Вопрос «Гранулометрический состав почв. Группы механических элементов, их характеристика, влияние на свойства почв. Классификация почв по гранулометрическому составу. Значение гранулометрического состава в агрономической оценке почв»

    Почва является полидисперсной системой, т. к. в состав ее твердой фазы входят минеральные, органические, и органо – минеральные частицы самых различных размеров: от молекулярных м коллоидных величин до грубых дисперсий – пыли, песка, камней. Эти элементарные частицы отличаются друг от друга не только по своей величине, но и по минералогическому и химическому составам, обладают различной активностью в отношении проходящих в почве физико–химических и биологических процессов. Водный, воздушный, пищевой режимы почвы и условия роста растений в значительной мере связаны с гранулометрическим составом почвы.

    Гранулометрический состав почвы это относительное содержание в породе или почве механических элементов различной величины, выраженное в процентах к массе сухой почвы.

    Н. А. Качинский предложил объединить механические элементы в следующие фракции: частицы крупнее 3 мм – камни. Фракция состоит из обломков горных пород. Положительной роли в почве нет.

    3–1 – гравий, состоит из обломков горных пород и первичных минералов. В небольшом количестве улучшает воздушный режим, а в большом – затрудняет механизированные процессы;

    1–0,05 – песок, состоит из первичных минералов. Такие почвы обладают хорошей аэрацией, легки в обработке, но имеют провальную водопроницаемость, в них не накапливается гумус, влага и элементы питания;

    0,05–0,01 – крупная пыль, по составу и свойствам близка к песку.

    0,01–0,005 –средняя пыль; 0,005–0,001 – мелкая пыль, состоят из вторичных минералов, такие почвы обладают высокой поглотительной способностью, в них накапливается много влаги, элементов питания, гумуса, но имеют плохую аэрацию, тяжелы в обработке, способны к набуханию, заплыванию и коркообразованию.

    мельче 0,001 мм – ил, по составу и свойствам близок к средней и мелкой пыли.

    Каждая из этих фракций отличается от остальных по своим свойствам. Для классификации почв по гранулометрическому составу все частицы крупнее 0,01 мм объединяют в «физический песок», мельче 0,01 мм – «физическую глину». Гранулометрический состав имеет большое производственное значение. Он учитывается при агротехнических мероприятиях, обработке, орошении, выборе культур и т. д.

    В России утвердилась двучленная классификация, предложенная Н. М. Симбирцевым и усовершенствованная А. Н. Сабаниным и Н. А. Качинским, учитывающая генетические особенности почв (содержание гумуса, состав обменных катионов, минералогический состав и др.) и связанную с ними неодинаковую способность глинистой фракции к агрегированию. Поэтому в классификации отдельно рассмотрены три основные группы почв: с подзолистым типом почвообразования, со степным типом почвообразования, а также солонцы и сильно солонцеватые почвы.

    Гумус почвы — это многокомпонентный комплекс, который состоит из различных органических веществ, полученных в результате разложения и переработки органических частиц. Состав гумуса не является постоянным — он находится в состоянии постоянных трансформаций.

    Количество гумуса в почве напрямую зависит от происхождения грунтовой породы и от особенностей почвообразующих процессов.

    Гумус не является основой почвы — содержание гумуса в грунте может составлять от 1% до 15%, при этом наиболее значительная его часть находится в верхних горизонтах, и постепенно, по мере углубления на более низкие горизонты, количество гумуса снижается.

    Плодородные качества почвы напрямую связаны с количеством гумуса, который в ней содержится. Чем этот процент выше, тем выше и плодородность. Содержащий большое количества гумуса грунт обладает большей ценностью. Наиболее высокое содержание гумуса в почве наблюдается среди черноземов.

    Какой состав у гумуса почвы?

    1) Основная часть гумусовой массы (от 85% до 90%) приходится на непосредственно гумусовые вещества.

    2) Остаток (10-15%) является сборником самых разнообразных органических веществ, которые можно назвать негумифицированными (ферменты, белковые соединения, аминокислоты, моно- олиго- и полисахариды, жиры, фосфолипиды, разновидности воска, органические кислоты, таннины, полифенолы, галловая кислота, смолы, альдегиды, спирты и др.

    Какой состав имеют гумусовые вещества?


    Гумусовые вещества состоят из трех основных компонентов:

    • гуминовые кислоты.
    • фульвокислоты.
    • гумины.

    1) Гуминовые кислоты.

    Это ряд органических кислот, высокомолекулярных, содержащих азот, с циклическим строением. Гуминовые кислоты не растворяются в воде, в минеральных кислотах, однако могут растворяться в щелочах низкой концентрации и определенных органических растворителях.

    В процентном содержании гуминовые кислоты представляют из себя комплекс из четырех основных элементов:

    • углерод — 50-62%
    • кислород — 31-40%
    • водород — 3-7%
    • азот — 2-6%

    Соотношение компонентов гуминовых кислот зависит от разновидности почвы, условий, в которых протекает гумификация, и состава органических остатков, подлежащих разложению.

    Например, подзолистые почвы имеют в составе своих гуминовых кислот много водорода и меньшее количество углерода, по сравнению с черноземами.

    Некоторый процент (1-10%) в составе гуминовых кислот может принадлежать зольным элементам, которые могут прикрепляться в качестве временных молекулярных компонентов.

    Гуминовые кислоты достаточно свободно подлежат разделению на фракции. Форма содержания гуминовых кислот в почве — гели.

    Вступая в химические реакции с минеральными почвенными компонентами, гуминовые кислоты могут образовывать соли, которые называются гуматами.

    2) Фульвокислоты.

    Фульвокислоты являются высокомолекулярными органическими кислотами, в состав которых входит азот. Растворяются в водной среде, растворах щелочей, кислотах, в аммиачном растворе (водном) и различных органических растворителях.

    Примерный состав фульвокислот следующий:

    • углерод — 40-52%
    • кислород — 40-48%
    • азот — 2-6%

    Фульвокислоты имеют кислую реакцию, что в сочетании с высокой степенью растворимости в воде приводит к разрушению минеральных компонентов почвы.

    Соли фульвокислот (фульваты) тоже хорошо растворяются.

    3) Гумины.

    Гуминами принято называть ту составную часть гумуса, что нельзя извлечь из лишенного кальция грунта с помощью щелочей.

    Преимущественно гумины состоят из таких же групп фульвокислот и гуминовых кислот, как и те, которые можно извлечь с применением щелочи из гумуса.

    Гумины прочно связаны с минеральными компонентами почвы.

    Гумины составляют от 15 до 48 процентов от количества гумуса, в зависимости от типа почвы.