• Измерение твердости металла. Твердость стали HRc, что за зверь

    Твёрдость

    Твёрдость - это способность материала сопротивляться проникновению в него другого, более твёрдого тела - индентора во всем диапазоне нагружения: от момента касания с поверхностью и до вдавливания на максимальную глубину. Существуют методы определения восстановленной и невосстановленной твёрдости.

    Метод определения восстановленной твёрдости.

    Твёрдость определяется как отношение величины нагрузки к площади поверхности, площади проекции или объему отпечатка. Различают поверхностную , проекционную и объемную твёрдость:

    • поверхностная твёрдость - отношение нагрузки к площади поверхности отпечатка;
    • проекционная твёрдость - отношение нагрузки к площади проекции отпечатка;
    • объёмная твёрдость - отношение нагрузки к объёму отпечатка.

    Метод определения невосстановленной твёрдости.

    Твёрдость определяется как отношение силы сопротивления к площади поверхности, площади проекции или объему внедренной в материал части индентора. Различают поверхностную , проекционную и объемную твёрдость:

    • поверхностная твёрдость - отношение силы сопротивления к площади поверхности внедренной в материал части индентора;
    • проекционная твёрдость - отношение силы сопротивления к площади проекции внедренной в материал части индентора;
    • объёмная твёрдость - отношение силы сопротивления к объёму внедренной в материал части индентора.

    Твёрдость измеряют в трёх диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на индентор от 2 до 30 кН. Микродиапазон регламентирует величину нагрузки на индентор до 2 Н и глубину внедрения индентора больше 0,2 мкм . Нанодиапазон регламентирует только глубину внедрения индентора, которая должна быть меньше 0,2 мкм . Часто твердость в нанодиапазоне называют нанотвердостью (nanohardness) [неизвестный термин ] .

    Измеряемая твердость, прежде всего, зависит от нагрузки, прикладываемой к индентору. Такая зависимость получила название размерного эффекта , в англоязычной литературе - indentation size effect . Характер зависимости твердости от нагрузки определяется формой индентора:

    • для сферического индентора - с увеличением нагрузки твердость увеличивается - обратный размерный эффект (reverse indentation size effect );
    • для индентора в виде пирамиды Виккерса или Берковича - с увеличением нагрузки твердость уменьшается - прямой или просто размерный эффект (indentation size effect );
    • для сфероконического индентора (типа конуса для твердомера Роквелла) - с увеличением нагрузки твердость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для сфероконической части индентора).

    Косвенно твердость также может зависеть от:

    1. Координационного числа - чем выше число, тем выше твёрдость.
    2. Природы химической связи
    3. От направления (например, минерал дистен - его твёрдость вдоль кристалла 4, а поперёк - 7)
    4. Гибкости - минерал легко гнётся, изгиб не выпрямляется (например, тальк)
    5. Упругости - минерал сгибается, но выпрямляется (например, слюды)
    6. Вязкости - минерал трудно сломать (например, жадеит)
    7. и ряда других физико-механических свойств материала.

    Наиболее твёрдыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода - лонсдейлит , на 58 % превосходящий по твёрдости алмаз и фуллерит (примерно в 2 раза твёрже алмаза ). Однако практическое применение этих веществ пока маловероятно. Самым твёрдым из распространённых веществ является алмаз (10 единиц по шкале Мооса, см. ниже).

    Методы измерения твёрдости

    Прибор Польди

    Методы определения твёрдости по способу приложения нагрузки делятся на: 1) статические и 2) динамические (ударные).

    Для измерения твёрдости существует несколько шкал (методов измерения):

    • Метод Бринелля - твёрдость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твёрдость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причём площадь отпечатка берётся как площадь части сферы, а не как площадь круга (твердость по Мейеру)); размерность единиц твердости по Бринеллю МПа (кг-с/мм²). Число твердости по Бринеллю по ГОСТ 9012-59 записывают без единиц измерения. Твёрдость, определённая по этому методу, обозначается HB, где H = hardness (твёрдость, англ. ), B - Бринелль;
    • Метод Роквелла - твёрдость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твёрдость, определённая по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твёрдость вычисляется по формуле HR = 100 (130) − kd , где d - глубина вдавливания наконечника после снятия основной нагрузки, а k - коэффициент. Таким образом, максимальная твёрдость по Роквеллу по шкалам A и C составляет 100 единиц, а по шкале B - 130 единиц.
    • Метод Виккерса - твёрдость определяется по площади отпечатка, оставляемого четырёхгранной алмазной пирамидкой, вдавливаемой в поверхность. Твёрдость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка (причём площадь отпечатка берётся как площадь части поверхности пирамиды, а не как площадь ромба); размерность единиц твёрдости по Виккерсу кг-с/мм² . Твёрдость, определённая по этому методу, обозначается HV;
    • Методы Шора:
    • Дюрометры и шкалы Аскер - по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и нац. японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами .
    Следует понимать, что хотя оба этих метода являются методами измерения твёрдости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал это - не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

    Методы измерения твёрдости делятся на две основные категории: статические методы определения твёрдости и динамические методы определения твёрдости.

    Для инструментального определения твёрдости используются приборы, именуемые твердомерами. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

    Существующие методы определения твёрдости не отражают целиком какого-нибудь одного определённого фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближенные таблицы, связывающие шкалы отдельных методов для определённых групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчетным методом перейти от одного способа определения твердости к другому.

    Конкретный способ определения твёрдости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

    В СНГ стандартизированы не все шкалы твёрдости.

    Нормативные документы

    • ГОСТ 8.062-85 «Государственная система обеспечения единства измерений. Государственный специальный эталон и государственная поверочная схема для средств измерений твердости по шкалам Бринелля»
    • ГЭТ 33-85 «Государственный специальный эталон единиц твердости по шкалам Бринелля»
    • ГОСТ 24621-91 (ISO 868-85) «Определение твёрдости при вдавливании с помощью дюрометра (твёрдость по Шору)».
    • ГОСТ 263-75 «Резина. Метод определения твёрдости по Шору А».
    • ГОСТ 23273-78 «Металлы и сплавы. Измерение твердости методом упругого отскока бойка (по Шору)».
    • ISO 2815 «Paints and varnishes - Buchholz indentation test».
    • DIN 53153 «Buchholz hardness».
    • ISO 14577 Metallic Materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method.

    Примечания

    Ссылки

    • Сравнительная таблица твёрдостей в разных шкалах. (Прим.: В таблице шкала Шора соответствует методу отскока.)

    Wikimedia Foundation . 2010 .

    Синонимы :

    Смотреть что такое "Твёрдость" в других словарях:

      У этого термина существуют и другие значения, см. Твёрдость (значения). Твёрдость (также твёрдость характера, твёрдость воли) черта характера, характеризующаяся последовательностью и упорством в достижении целей или отстаивании взглядов.… … Википедия

      У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод также является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

      твёрдость - и; ж. 1) к твёрдый 2), 3), 4), 5), 6), 7), 8), 9) Твёрдость древесины. Твёрдость духа. Твёрдость воли, характера, убеждений. Твёрдость памяти. Твёрдость решения. Твёрдость движений … Словарь многих выражений

      У этого термина существует и другое значение, см. Твёрдость по Шору. При этом следует понимать, что хотя в другом значении этот метод так же является методом измерения твёрдости, оба метода предложены одним и тем же автором, имеют совпадающие… … Википедия

      твёрдость по Мартенсу - склерометрическая твёрдость твёрдость по склероскопу — Тематики нефтегазовая промышленность Синонимы склерометрическая твёрдостьтвёрдость по склероскопу EN… … Справочник технического переводчика

      Сопротивление металлов вдавливанию. Т. м. не является физической постоянной, а представляет собой сложное свойство, зависящее как от прочности и пластичности, так и от метода измерения. Т. м. характеризуется числом твёрдости. Наиболее… …

      Твёрдость по Бринеллю - Бринелля метод [по имени шведского инженера Ю.А.Бринелля (J.A.Brinell)] способ определения твёрдости материалов вдавливанием в испытываемую поверхность стального закалённого шарика диаметром 2,5; 5 и 10 мм пр нагрузке P от 625 H до 30 кН. Число… … Металлургический словарь

      Твёрдость по Виккерсу - Виккерса метод [по названию английского военно промышленного концерна Виккерс (Vickers Limited)] способ определения твёрдости материалов вдавливанием в поверхность образца или изделия алмазного индентора имеющего форму правильной четырёхгранной … Металлургический словарь

      Твёрдость по Роквеллу - Роквелла метод [по имени американского металлурга С.Роквелла (S.Rockwell), разработавшего этод метод] способ определения твёрдости материалов (главным образом металлов) вдавливанием в испытываемую поверхность алмазного индентора с углом при… … Металлургический словарь

      Свойство минералов оказывать сопротивление проникновению в них др. тел. Твёрдость важный диагностический и типоморфный признак минерала, функция его состава и структуры, которые в различной мере отражают условия минералообразования. Т. м … Большая советская энциклопедия

    Существует довольно большое количество различных механических характеристик металла, которые учитываются при производстве различных деталей. Многие из них зависят от химического состава материала, другие от особенностей эксплуатации. Измерение твердости металла проводится чаще других испытаний, так как это качество во многом определяет особенности эксплуатации материала. Рассмотрим особенности определения твердости подробнее.

    Понятие твердости

    Твердость – свойство материалов, характеризующее способность проникновения одного, более твердого, тела в другое. Также эта характеристика определяет устойчивость к пластической деформации или разрушению поверхностных слоев при оказании сильного давления.

    Измеряется показатель в самых различных единицах в зависимости от применяемого метода.

    Все методы определения твердости материалов можно разделить на несколько основных групп:

    1. Статические. Подобные методы характеризуются тем, что нагрузка постепенно возрастает. Время выдержки может быть разным — все зависит от особенностей применяемого метода.
    2. Динамические характеризуются тем, что нагрузка на образец подается с определенной кинетической энергией. При этом показатель твердости является менее точным, так как при динамической нагрузке возникает определенная отдача из-за упругости материала. Результаты подобных испытаний зачастую называют твердостью материалов при ударе.
    3. Кинетические основаны на непрерывной регистрации показателей во время проведения испытаний, что позволяет получить не только конечный, но и промежуточный результат. Для этого применяется специальное оборудование.

    Кроме этого, классификация методов определения твердости проводится по принципу приложенной нагрузки. Выделяют следующие способы испытания образца:

    1. Вдавливание является на сегодняшний день наиболее распространенным способом определения рассматриваемого показателя.
    2. При отскоке проводится замер того, как высоко боек отлетит от поверхности испытуемого образца. В данном случае просчет твердости проводится по показателю сопротивления упругой деформации. Методы подобного типа довольно часто применяются для контроля качества прокатных валиков и изделий с большими размерами.
    3. Методы, основанные на царапании и резании, сегодня применяются крайне редко. Были они разработаны два столетия назад.

    Как правило, в твердомерах есть деталь, которая оказывает воздействие на испытываемую заготовку. Примером можно назвать стальные шарики различного диаметра и алмазные наконечники с формой пирамиды. Некоторые из применяемых на сегодняшний день методов рассмотрим подробнее.

    Измерение твердости по Бринеллю

    Чаще всего проводится измерение твердости по Бринеллю. Этот метод регламентирован ГОСТ 9012. К особенностям испытания металлов и сплавов подобным методом можно отнести следующие моменты:

    1. В качестве тела, которое будет оказывать воздействие на испытуемый образец, используется стальной шарик.
    2. Для тестирования применяется шарик с определенным диаметром, который изготавливается из закаленной стали. К нему прилагается постоянно нарастающая нагрузка.
    3. Главным условие применения этого метода тестирования металлов и сплавов является то, что шарик должен изготавливается из более твердого материала, чем испытуемый образец.
    4. После завершения теста проводится измерение полученного отпечатка на поверхности.
    5. Данный способ позволяет получить данные, которые указываются в HB. Именно это обозначение сегодня встречается чаще других в различной справочной документации.
    6. Для удобства применения данного способа были созданы специальные таблицы, которые основаны на зависимости диаметрального размера шарика, твердости и полученного отпечатка.

    Измерение твердости по Виккерсу

    Также выделяют метод измерения твердости по Виккерсу, который регламентирован ГОСТ 2999. Получил он распространение при определении твердости деталей и заготовок, который имеют небольшую толщину. Кроме этого, он может применяться для измерения твердости деталей, имеющих поверхностный твердый слой.

    К особенностям этого способа тестирования образца можно отнести нижеприведенные моменты:

    1. Применяется так называемый алмазный наконечник, который имеет форму пирамиды с четырьмя гранями и равными сторонами.
    2. Выбирается определенное время выдержки.
    3. После того, как снимается нагрузка, проводится измерение размеров диагоналей получившегося отпечатка и вычисляется среднее арифметическое значение.
    4. Величина прилагаемой нагрузки регламентирована, может выбираться в зависимости от типа тестируемого материала.
    5. Полученные результаты в ходе проведения исследований обозначаются HV.

    В некоторых случаях после полученного значения указывается время выдержки и величина прилагаемой нагрузки, что позволяет с большей точностью определить значение твердости.

    Измерение твердости по Роквеллу

    Данный метод регламентируется ГОСТ 9013. Для его проведения используется специальный прибор для измерения твердости, который позволяет создать две последовательные нагрузки, прилагаемые к поверхности образца. К особенностям проведения подобного теста можно отнести:

    1. Сначала оказывается предварительная нагрузка, после чего добавляется вторая.
    2. После выдержки под общей нагрузкой в течении 3-5 секунд вторая снимается, проводится замер глубины отпечатка, затем снимается предварительная нагрузка.
    3. Измерение полученных данных проводится в условных единицах, которые равны осевому смещению индикатора на 0,002.
    4. Определяется число твердости по Роквеллу по специальной шкале прибора.
    5. Форма применяемого индикатора может существенно отличаться. Именно поэтому было введено несколько типов измерительных шкал, которые соответствуют определенной форме индикатора.
    6. Для обозначения полученной величины могут применяться обозначения HIRA, HRC, HRB. Они соответствуют форме применяемого индикатора и шкалы обозначения.

    В качестве индикатора могут использоваться стальной шарик и два алмазных конуса различного размера. Этот метод измерения твердости закаленных деталей проводится только при применении алмазного конуса меньшего размера, предварительная оказываемая нагрузка составляет 10 кгс, основная 50 кгс. За счет предварительной нагрузки исключается вероятность того, что из-за упругости материала полученные значения будут менее точными. Кроме этого, предварительная нагрузка позволяет проводить измерение твердости металлов и сплавов, которые прошли предварительную термическую обработку.

    Измерение твердости по Шору

    Метод определения твердости по Шору применяется для тестирования прокатных валиков на момент их изготовления. Кроме этого, проверка рассматриваемого показателя может проводиться при эксплуатации валиков на прокатных станках, так как из-за оказываемого воздействия структура металла может изменяться, ухудшая эксплуатационные качества. Регламентирован метод Шора ГОСТ 23273.

    Рассматривая измерение твердости по Шору, следует отметить следующие моменты:

    1. В отличие от предыдущих способов, рассматриваемый основан на свободном падении алмазного индикатора на тестируемую поверхность с определенной высоты. Для тестирования применяется специальное оборудование, которое позволяет фиксировать точно высоту отскока.
    2. Масса применяемого бойка с алмазным наконечником составляет 36 грамм. Этот показатель важен, так как учитывается при проводимых расчетах.
    3. Твердость определяется по высоте отскока, измерение проводится в условных единицах. Падение образца на поверхность происходит с образованием небольшого углубления, а упругость приводит к обратному отскоку. Этот метод хорош тем, что позволяет проводить тестирование образцов, которые прошли предварительную термическую обработку. При постепенном вдавливании возникающая нагрузка может стать причиной деформирования используемого наконечника или шарика. В этом случае вероятность их деформации весьма мала.
    4. За 100 единиц твердости в этом случае принято считать высоту отскока 13,6 мм с возможностью небольшого отклонения в большую или меньшую сторону. Этот показатель можно получить при тестировании углеродистой стали, прошедшей процесс закалки. В качестве обозначения применяется аббревиатура HSD.

    Сегодня этот способ измерения твердости применяется довольно редко из-за высокой погрешности и сложности замера высоты отскока байка от тестируемой поверхности.

    Как ранее было отмечено, существует довольно большое количество методов измерения рассматриваемого показателя. Однако из-за сложности проведения тестов и большой погрешности многие уже не применяются.

    В некоторых случаях проводится тестирование на микротвердость. Для измерения этого показателя прилагается статическая нагрузка к телу с формой пирамиды, и оно входит в испытуемые образец. Время выдержки может варьироваться в большом диапазоне. Показатель вычисляется примерно так же, как при методе Виккерса.

    Соотношение значений твердости

    При выборе метода измерения твердости поверхности следует учитывать, что между полученными данными нет никакой связи. Другими словами, выполнить точный перевод одной единицы измерения в другую нельзя. Применяемые таблицы зависимости не имеют физического смысла, так как они эмпирические. Отсутствие зависимости также можно связать с тем, что при тестировании применяется разная нагрузка, различные формы наконечников.

    Существующие таблицы следует применять с большой осторожностью, так как они дают только приблизительные результаты. В некоторых случаях рассматриваемый перевод может оказаться весьма точным, что связано с близкими физико-механическими свойствами испытуемых металлов.

    В заключение отметим, что значение твердости связано со многими другими механическими свойствами, к примеру, прочностью, упругостью и пластичностью. Поэтому для определения основных свойств металла довольно часто проводят измерение именно твердости. Однако прямой зависимости между всеми механическими свойствами металлов и сплавов нет, что следует учитывать при проведении измерений.

    Методы измерения твердости

    Одной из наиболее распространенных характеристик, определяющих качество металлов и сплавов, возможность их применения в различных конструкциях и при различных условиях работы, является твердость. Испытания на твердость производятся чаще, чем определение других механических характеристик металлов: прочности, относительного удлинения и др.

    Твердостью материала называют способность оказывать сопротивление механическому проникновению в его поверхностный слой другого твердого тела. Для определения твердости в поверхность материала с определунной силой вдавливается тело (индентор), выполненное в виде стального шарика, алмазного конуса, пирамиды или иглы. По размерам получаемого на поверхности отпечатка судят о твердости материала. Таким образом, под твердостью понимают сопротивление материала местной пластической деформации, возникающей при внедрении в него более твердого тела – индентора. В зависимости от способа измерения твердости материала, количественно ее характеризуют числами твердости по Бринеллю (НВ), Роквеллу (HRC) или Виккерсу (HV).

    Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника. Твердость можно измерять вдавливанием индентора (способ вдавливания), ударом или же по отскоку наконечника – шарика. Твердость, определенная царапаньем, характеризует сопротивление разрушению, по отскоку – упругие свойства, вдавливанием - сопротивление пластической деформации. Перспективным и высокоточным методом является метод непрерывного вдавливания, при котором записывается диаграмма перемещения, возникающего при внедрении индентора, с одновременной регистрацией усилий. В зависимости от скорости приложения нагрузки на индентор твердость различают статическую (нагрузка прикладывается плавно) и динамическую (нагрузка прикладывается ударом).

    Таблица 1 - Особенности различных методов измерени твердости

    Способ измерения

    Форма индентора

    Нагружение F, H

    Допустимая шероховатость поверхности Ra

    Бринелля

    по диаметру отпечатка

    стальной шарик

    статичиское

    Роквелла

    по глубине вдавливания

    алмазный конусный наконечник или стальной шариковый

    статическое

    Супер-Роквелла

    по глубине вдавливания

    алмазный конус или стальной шарик

    статическое

    Виккерса

    по глубине вдавливания или по диагонали отпечатка

    алмазный наконечник в форме правильной черырехгранной пирамиды

    статическое

    по диаметру отпечатка

    победитовый конус

    статическое

    Шора (Монотрон)

    по заданной глубине отпечатка

    алмазный или стальной наконеник

    статическое

    Мартенса

    по ширине царапины

    алмазный конус или пирамида

    динамическое а

    Широкое распространение испытаний на твердость объясняется рядом их преимуществ перед другими видами испытаний:

    Простота измерений, которые не требуют специального образца и могут быть выполнены непосредственно на проверяемых деталях;

    Высокая производительность;

    Измерение твердости обычно не влечет за собой разрушения детали, и после измерения ее можно использовать по своему назначению;

    Возможность ориентировочно оценить по твердости другие характеристики металла (например предел прочности).

    Наибольшее применение получило измерение твердости вдавливанием в испытываемый металл индентора в виде шарика, конуса и пирамиды (соответственно методы Бринелля (рис.1, а)), Роквелла (рис.1, б)) и Виккерса (рис.1, в))). В результате вдавливания достаточно большой нагрузкой поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Величина внедрения наконечника в поверхность металла будет тем меньше, чем тверже испытываемый материал.

    Рисунок 1 - Схемы испытаний на твердость: а - по Бринеллю; б - по Роквеллу; в - по Виккерсу.

    КЛАССИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ ТВЕРДОСТИ

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО БРИНЕЛЛЮ


    Рисунок 2 - Схема испытиний на твердость по Бринеллю

    Твердость по методу Бринелля (ГОСТ 9012-59) измеряют вдавливанием в испытываемый образец стального шарика определенного диаметра D под действием заданной нагрузки P в течение определенного времени (рис. 2). В результате вдавливания шарика на поверхности образца получается отпечаток (лунка).

    Число твердости по Бринеллю, обозначаемое HB (при применении стального шарика для металлов с твердостью не более 450 единиц) или HBW

    (при применении шарика из твердого сплава для металлов с твердостью не более 650 единиц), представляет собой отношение нагрузки P к площади поверхности сферического отпечатка F и измеряется в кгс/мм2 или МПа:

    , (1)

    Площадь шарового сегмента составит:

    , мм2, (2)

    где D –диаметр шарика, (мм);

    h – глубина отпечатка, (мм).

    Так как глубину отпечатка измерить трудно, а проще измерить диаметр отпечатка d, выражают h через диаметр шарика D и отпечатка d:

    , мм (3) , мм2 (4)

    Число твердости по Бринеллю определяется по формуле:

    , кгс/мм2 (5)

    В практике при определении твердости не делают вычислений по формуле (5), а пользуются таблицами, составленными для установленных диаметров шариков, отпечатков и нагрузок. Шарики применяют диаметром 1,2; 2,5; 5; 10 мм. Диаметр шарика и нагрузка выбираются в соответствии с толщиной и твердостью образца. При этом для получения одинаковых чисел твердости одного материала при испытании шариками разных диаметров необходимо соблюдать закон подобия между получаемыми диаметрами отпечатков. Поэтому твердость измеряют при постоянном соотношении между величиной нагрузки P и квадратом диаметра шарика D2. Это соотношение должно быть различным для металлов разной твердости.

    Число твердости по Бринеллю, измеренное при стандартном испытании (D = 10 мм, P = 3000 кгс), записывается так: HB 350. Если испытания проведены при других условиях, то запись будет иметь следующий вид: HB 5/250/30-200 или 200 HB 5/250/30, что означает – число твердости 200 получено при испытании шариком диаметром 5 мм под нагрузкой 250 кгс и длительности нагрузки 30 с. При испытании на твёрдость шаром из карбида вольфрама обозначение НВ дополняется буквой W с сохранением указанных индексов.

    При измерении твердости по методу Бринелля необходимо выполнять следующие условия:

    Образцы с твердостью выше HB 450/650 кгс/мм2 испытывать запрещается;

    Поверхность образца должна быть плоской и очищенной от окалины и других посторонних веществ;

    Диаметры отпечатков должны находиться в пределах 0,2D

    Образцы должны иметь толщину не менее 10-кратной глубины отпечатка (или менее диаметра шарика);

    Расстояние между центрами соседних отпечатков и между центром отпечатка и краем образца должны быть не менее 4d;

    Продолжительность выдержки под нагрузкой должна быть от 10 до 15 с для чёрных металлов, для цветных металлов и сплавов – от 10 до 180 с, в зависимости от материала и его твёрдости.

    Диаметр отпечатка измеряют при помощи отсчетного микроскопа (лупы Бринелля), на окуляре которого имеется шкала с делениями, соответствующими десятым долям миллиметра. Измерение проводят с точностью до 0,05 мм в двух взаимно перпендикулярных направлениях; для определения твердости следует принимать среднюю из полученных величин.

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ПО РОКВЕЛЛУ

    Твердость по Роквеллу - твердость, определяемая разностью между условной максимальной глубиной проникновения индентора и остаточной глубиной его внедрения под действием основной нагрузки F1, после снятия этой нагрузки, но при сохранении предварительной нагрузки Fo. При этом методе индентором является алмазный конус или стальной закаленный шарик. В отличие от измерений по методу Бринелля твердость определяют по глубине отпечатка, а не по его площади. Глубина отпечатка измеряется в самом процессе вдавливания, что значительно упрощает испытания. Нагрузка прилагается последовательно в две стадии (ГОСТ 9013-59): сначала предварительная, обычно равная 10 кгс (для устранения влияния упругой деформации и различной степени шероховатости), а затем основная (рис.1, б)).

    После приложения предварительной нагрузки индикатор, измеряющий глубину отпечатка, устанавливается на нуль. Когда отпечаток получен приложением окончательной нагрузки, основную нагрузку снимают и измеряют остаточную глубину проникновения наконечника h.

    Твердомер Роквелла измеряет разность между глубиной отпечатков, полученных от вдавливания наконечника под действием основной и предварительной нагрузок. Каждое давление (единица шкалы) индикатора соответствует глубине вдавливания 2 мкм. Однако условное число твердости по Роквеллу (HR) представляет собой не указанную глубину вдавливания h, а величину 100 – h по черной шкале при измерении конусом и величину 130 – h по красной шкале при измерении шариком. Числа твердости по Роквеллу не имеют размерности и того физического смысла, который имеют числа твердости по Бринеллю, однако можно найти соотношение между ними с помощью специальных таблиц.

    HRA, HRC, HRD – твердость по Роквеллу измеренная при внедрении в поверхность образца алмазного конуса.

    HRB, HRE, HRF, HRG, HRH, HRK - твердость по Роквеллу измеренная при внедрении в поверхность образца стального сферического наконечника.

    Министерство образования и науки Российской Федерации

    Федеральное агентство по образованию

    Саратовский государственный технический университет

    Определение твердости материалов

    Методические указания к учебно-исследовательской лабораторной работе для студентов всех специальностей

    дневной, вечерней и заочной форм обучения

    Одобрено

    редакционно-издательским советом

    Саратовского государственного

    технического университета

    Саратов 2009

    Цель работы: ознакомить студентов с методами определения твердости материалов

    Определение твердости является широко применяемым в лабораторных и заводских условиях способом испытаний для характеристики механических свойств материалов.

    Твердость металлов измеряют при помощи воздействия на поверхность металла наконечника, изготовленного из малодеформирующего материала (твердая закаленная сталь, алмаз, сапфир, или твердый сплав). Наконечник может иметь форму шарика, конуса, пирамиды или иглы.

    Существует несколько способов измерения твердости, различающихся по характеру воздействия наконечника: вдавливание наконечника, царапание поверхности, удар наконечника-шарика.

    Наибольшее применение получило измерение твердости вдавливанием. В результате вдавливания поверхностные слои металла, находящиеся под наконечником и вблизи него, пластически деформируются. После снятия нагрузки остается отпечаток. Особенность происходящей при этом деформации в том, что она протекает только в небольшом объеме, окруженном недеформированным металлом. Таким образом, твердость характеризует сопротивление металла пластической деформации и представляет собой его механическое свойство.

    Следует различать два способа определения твердости вдавливанием: измерение макротвердости и измерение микротвердости:

    1. Измерение твердости (макротвердости) характерно тем, что в испытуемый металл вдавливается тело значительных размеров (например, стальной шарик диаметром 10 мм), проникающее на сравнительно большую глубину. В результате чего в деформируемом объеме оказываются представленными все фазы и структурные составляющие сплава. Измеренная твердость должна в этом случае характеризовать твердость всего испытуемого материала (“усредненная” твердость).

    Выбор формы, размеров наконечника и величины нагрузки зависят от целей испытания, структуры, ожидаемых свойств, состояния поверхности и размеров испытуемого образца.

    2. Измерение микротвердости имеет целью определить твердость отдельных зерен, фаз и структурных составляющих сплава. В этом случае объем, деформированный вдавливанием, должен быть меньше объема измеряемого зерна. Поэтому прилагаемая нагрузка выбирается небольшой.

    Наиболее широко применяются следующие способы измерения твердости:

      вдавливанием стального шарика (метод Бринелля);

      вдавливанием алмазного конуса (метод Роквелла);

      вдавливанием четырехгранной алмазной пирамиды (метод Виккерса).

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ ШАРИКА

    (ТВЕРДОСТЬ ПО БРИНЕЛЛЮ)

    Этот способ используется для определения твердости как металлов, так и неметаллических материалов.

    При измерении твердости металлов по Бринеллю в материал вдавливается стальной закаленный шарик под действием заданной нагрузки в течении определенного времени. В результате на поверхности образца образуется отпечаток, диаметр которого измеряют. Значение твердости определяют по величине поверхности отпечатка, оставляемого шариком. Шарик вдавливается с помощью пресса (рис. 1). Испытуемый образец (деталь) 3 устанавливается на столик 1, прошлифованной поверхностью кверху. Поворотом вручную маховика 2 по часовой стрелке столик поднимают вверх, и образец 3 прижимается к шарику 4. Нагрузка прилагается автоматически с помощью электродвигателя 5 при нажатии пусковой кнопки. Эта нагрузка, создаваемая грузом 6, действует обычно 10-60 с в зависимости от твердости измеряемого материала. После автоматического выключения двигателя, поворачивая маховик 2 против часовой стрелки, опускают столик прибора и снимают образец 3.

    Рис. 1. Схема измерения твердости по Бринеллю

    На образце остается отпечаток со сферической поверхностью (лунка). Диаметр отпечатка, измеряют обычно лупой, на окуляре которой нанесена шкала с делениями, соответствующими 0,1 мм. Схема испытания на твердость по методу Бринелля и отсчет по шкале показаны на рис. 1.

    Число твердости по Бринеллю, обозначаемая НВ, определяется путем деления нагрузки на площадь поверхности сферического отпечатка, и может быть определено по формуле:

    выражена в Ньютонах или

    ,

    выражена в килограмм-силе.

    В этих выражениях

    А – площадь поверхности отпечатка, мм;

    D - диаметр вдавливаемого шарика, мм;

    d - диаметр отпечатка, мм.

    Диаметр шарика, нагрузку и продолжительность выдержки под нагрузкой выбирают в зависимости от твердости и толщины испытуемого изделия или образца. Для испытания используют образцы с чистой и гладкой поверхностью, а толщина образцов должна быть не менее десятикратной глубины отпечатка.

    Нормы испытания на твердость по Бринеллю приведены в табл. 1.

    Таблица 1

    Нормы испытания на твердость по Бринеллю

    При измерении твердости шариком определенного диаметра и установленными нагрузками нет необходимости проводить расчет по указанной выше формуле. На практике используется заранее составленными таблицами, указывающими число НВ от диаметра отпечатка.

    Измерение твердости по Бринеллю не является универсальным способом, поскольку не позволяет:

    а) использовать материалы с твердостью более НВ4500Н, так как шарик будет деформироваться и показания будут не точны;

    б) измерять твердость тонкого поверхностного слоя (толщиной 1-2 мм), так как шарик будет продавливать тонкий слой металла.

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЕМ

    АЛМАЗНОГО КОНУСА ИЛИ СТАЛЬНОГО ШАРИКА

    (ТВЕРДОСТЬ ПО РОКВЕЛЛУ)

    Принципиальное отличие измерения твердости по способу Роквелла от измерения по способу Бринелля состоит в том, что ее измеряют не по диаметру, а по глубине отпечатка получаемого в результате вдавливания алмазного конуса с углом при вершине равным 120 о или стального закаленного шарика диаметром 1,588 мм. Конус или шарик вдавливают в испытуемый образец под действием двух последовательно прилагаемых нагрузок: предварительной Р 0 и основной будет равна: Р= Р 0 + Р 1 .

    При испытании сначала прикладывают предварительную нагрузку Р 0 =100 Н, затем общую нагрузку Р , равную: при вдавливании шарика (шкала В) 1000 Н; при вдавливании алмазного конуса (шкала С) 1500 Н; при вдавливании алмазного конуса (шкала А) 600 Н (рис. 2).

    Рис.2. Разновидность глубины проникновения наконечника под действием двух нагрузок

    Твердость по Роквеллу обозначается цифрами и буквами HR с указанием шкалы твердости (А,В,С).

    Число твердости по Роквеллу определяют по формуле

    HR = (k-(h-h 0 )/c

    где h 0 - глубина внедрения наконечника под действием силы Р 0 ;

    h - глубина внедрения наконечника под действием общей

    нагрузки Р ;

    к - постоянная величина, для шарика 0,26; для конуса 0,2;

    с - цена деления циферблата индикатора.

    При измерении твердости нагрузка должна действовать строго перпендикулярно к поверхности образца. Нагрузки следует прилагать плавно.

    Твердость измеряют на приборе, представленном на рис. 3.

    Рис.3. Схема прибора для измерения твердости по Роквеллу

    Стол 1 служит для установки на нем испытуемого образца 3. Вращая по часовой стрелке маховик 2, подводят образец до соприкосновения с наконечником 4. При дальнейшем вращении маховика наконечник начинает внедряться в образец, а на шкале индикатора наблюдают за поворотом малой стрелки. Предварительное нагружение производят до тех пор, пока малая стрелка индикатора не совпадет с красной точкой.

    Когда образец получает предварительную нагрузку 100 Н (10 кГс), большая стрелка индикатора принимает вертикальное положение (или близкое к нему). Точную установку шкалы индикатора на ноль производят при помощи барабана 6. Затем нажимают на клавишу 7, при этом обеспечивается действие основной нагрузки и создается общая нагрузка (предварительная + основная).

    При таком нагружении большая стрелка перемещается по циферблату индикатора против часовой стрелки. Время приложения общей нагрузки 5-7 с. Затем основная нагрузка снимается автоматически и остается только предварительная. Большая стрелка индикатора перемещается по часовой стрелке. Цифра, которую укажет на циферблате индикатора большая стрелка, представляет число твердости по Роквеллу. Далее поворачивают маховик 2 против часовой стрелки, опускают столик и снимают образец.

    Твердость на приборе Роквелла можно измерять:

    1) алмазным конусом с общей нагрузкой 1500 Н (150 кГс). В этом случае значение твердости определяют по черной шкале “С” индикатора и обозначают НRC. Эта шкала применяется при испытании закаленных сталей (до HRC 67);

    2) алмазным конусом с общей нагрузкой 600 Н (60 кГс). В этом случае значения твердости также определяются по черной шкале “С”, но обозначают HRA. Числа HRA можно перевести на числа HRC по формуле: HRC = 2 HRA - 104. Эта шкала применяется для испытания сверхтвердых сплавов (например на основе карбидов вольфрама, обладающих твердостью HRC>68), тонкого листового материала и для измерения твердости тонких поверхностных слоев (0,3-0,5 мм);

    3) стальным шариком с общей нагрузкой 1000 Н (100 кГс).

    В этом случае значения твердости определяют по красной шкале “В” и обозначают HRB. Шкала В служит для испытания металлов средней твердости и для испытания изделия толщиной от 0,8 до 2 мм.

    К достоинствам метода Роквелла следует отнести высокую производительность, простоту обслуживания, точность измерения и сохранение качественной поверхности после испытаний.

    ИЗМЕРЕНИЕ ТВЕРДОСТИ ВДАВЛИВАНИЯ

    АЛМАЗНОЙ ПИРАМИДЫ

    (ТВЕРДОСТЬ ПО ВИККЕРСУ)

    Этот способ используется для измерения твердости черных и цветных металлов и сплавов.

    Твердость по методу Виккерса определяют путем вдавливания в испытуемую поверхность алмазной четырехгранной пирамиды с углом при вершине 136 0 под нагрузкой 50, 100, 200, 300, 500, 1000 Н. По диагоналям h 1 и h 2 отпечатка, пирамиды и углу при вершине пирамиды определяют площадь поверхности отпечатка и рассчитывают по формуле:

    HV = (2 P sin (/2)/ d 2 ) = 1,854 (P / d 2 ),

     - угол между противоположными гранями пирамиды (136 0);

    d – среднеарифметические значения длин обеих диагоналей отпечатка после снятия нагрузки, мм.

    Испытания проводят на приборе (рис. 4), имеющем неподвижную станину, в нижней части которой установлен столик 1, перемещающийся по вертикали вращением маховика 2. Образец 3 устанавливают на столик испытуемой поверхностью кверху и поднимают столик почти до соприкосновения образца с алмазной пирамидой 4. Нажатием педали пускового рычага 5 приводят в действие нагружающий механизм, который через рычаг передает давление грузов 6. Продолжительность нагружения при испытании составляет от 10 до 60 с, что регистрируется сигнальной лампочкой на приборе. После снятия нагрузки столик опускают и подводят микроскоп 7, с помощью которого определяют длину диагонали отпечатка.

    Рис.4. Схема прибора для измерения твердости по Виккерсу

    В окуляре микроскопа (рис. 5,б) имеются подвижная шкала и три штриха - два основных 1 и 2, и один дополнительный 3 (рис. 5,б). Вращением винта 1 (рис. 5,а) подводят штрих 1 к левому углу отпечатка (рис. 5,б). Вращением микрометрического винта 2 (рис. 5,а) подводят штрих 2 к правому углу отпечатка. Полученную величину диагонали отпечатка записать в протокол испытания.

    Рис.5. Схемы: а). микрометрического винта; б). определения величины отпечатка

    Измерять необходимо обе диагонали отпечатка и принимать среднюю величину измерений. Полученный результат перевести в значение твердости HV, пользуясь таблицами. Возможность применения малых нагрузок 50, 100 Н позволяет определить твердость деталей малой толщины и тонких поверхностных слоев, например, цементированных, азотированных и других.

    Числа твердости по Виккерсу и по Бринеллю для материалов твердостью до НВ 4500 практически совпадают. Вместе с тем, измерения пирамидой дают более точные значения для металлов с высокой твердостью, чем измерения шариком или конусом. Алмазная пирамида имеет большой угол в вершине (136 0) и диагональ его отпечатка примерно в 7 раз больше глубины отпечатка, что повышает точность измерения даже при проникновении пирамиды на небольшую глубину.

    На каждой выставке, независимо от места проведения, находится один или несколько посетителей, которые высказывают явное недовольство по поводу недостаточной твердости стали наших ножей. В качестве аргументов они приводят собственное мнение, слова других продавцов («а вот там нам сказали, что у них твердость – 90!»), мнение знакомых и собеседников на форумах. Время от времени встречаются, мягко говоря, оригиналы, заявляющие: «Докажите твердость своих изделий – ударьте сильно друг об друга лезвиями, а который останется без следа, тот нож я куплю!»

    Определимся с терминами

    Чаще всего, эти господа не представляют, о чем именно они говорят. В частности, плохо представляют значение термина твердость у металлов и сплавов, а также не ориентируются в единицах измерения твердости. Напомним себе и остальным, что такое твердость стали ножа, в чем и как измеряется твердость стали ножа, и на что значение твердости стали ножа влияет.

    По данным Википедии, твердость - свойство материала сопротивляться проникновению в него другого, более твердого тела. Твердость определяется как отношение величины нагрузки к площади или объему поверхности отпечатка. Различают поверхностную и объемную твердость:

    • поверхностная твердость - отношение нагрузки к площади поверхности отпечатка;
    • объемная твердость - отношение нагрузки к объему отпечатка.

    Различают также восстановленную и невосстановленную твердость. Восстановленная твердость определяется как отношение нагрузки к площади или объему отпечатка, а невосстановленная твердость определяется как отношение силы сопротивления внедрению более твердого материала к площади или объему внедренной в материал части более твердого тела.

    Твердость измеряют в трех диапазонах: макро, микро, нано. Макродиапазон регламентирует величину нагрузки на внешнее, более твердое тело от 2 Н до 30 кН. Микродиапазон регламентирует величину нагрузки на более твердое тело до 2 Н и глубину внедрения более твердого тела больше 0,2 мкм. Нанодиапазон регламентирует только глубину внедрения более твердого тела, которая должна быть меньше 0,2 мкм.

    Измеряемая твердость, прежде всего, зависит от нагрузки, прикладываемой к более твердому телу. Такая зависимость получила название размерного эффекта, в англоязычной литературе - indentation size effect. Характер зависимости твердости от нагрузки определяется формой более твердого тела (индентора):

    • для сферического индентора - с увеличением нагрузки твердость увеличивается - обратный размерный эффект (reverse indentation size effect);
    • для индентора в виде пирамиды Виккерса или Берковича - с увеличением нагрузки твердость уменьшается - прямой или просто размерный эффект (indentation size effect);
    • для сфероконического индентора (типа конуса для твердомера Роквелла) - с увеличением нагрузки твердость сначала увеличивается, когда внедряется сферическая часть индентора, а затем начинает уменьшаться (для сфероконической части индентора).

    Косвенно твердость также может зависеть от:

    • Межатомных расстояний
    • Координационного числа - чем выше число, тем выше твердость
    • Валентности
    • Природы химической связи
    • От направления (например, минерал дистен - его твердость вдоль кристалла равна 4, а поперек - 7)
    • Хрупкости и ковкости
    • Гибкости - минерал легко гнется, изгиб не выпрямляется (например, тальк)
    • Упругости - минерал сгибается, но выпрямляется (например, слюды)
    • Вязкости - минерал трудно сломать (например, жадеит)
    • Спайности

    и ряда других физико-механических свойств материала.
    Наиболее твердыми из существующих на сегодняшний день материалов являются две аллотропные модификации углерода - лонсдейлит, на 58 % превосходящий по твердости алмаз и фуллерит (примерно в 2 раза тверже алмаза). Однако практическое применение этих веществ пока маловероятно. Самым твердым из распространенных веществ является алмаз (10 единиц по шкале Мооса).

    Чем измеряется твердость?

    Твердость твердостью, но нам важнее понять, что означают заветные цифры, которые так ценятся любителями ножей! Дело в том, что для определения твердости применяются разные методы измерения. И для каждого метода измерения твердости существует своя шкала измерения твердости.

    Методы определения твердости по способу приложения нагрузки делятся на статические и динамические (ударные).

    Метод Бринелля - твердость определяется по диаметру отпечатка, оставляемому металлическим шариком, вдавливаемым в поверхность. Твердость вычисляется как отношение усилия, приложенного к шарику, к площади отпечатка (причем площадь отпечатка берется как площадь части сферы, а не как площадь круга (так измеряется твердость по Мейеру). Число твердости по Бринеллю по ГОСТ 9012-59 записывают без единиц измерения. Твердость, определенная по этому методу, обозначается HB, где H = hardness (твердость, англ.), B - Бринелль;

    Метод Роквелла - твердость определяется по относительной глубине вдавливания металлического шарика или алмазного конуса в поверхность тестируемого материала. Твердость, определенная по этому методу, является безразмерной и обозначается HR, HRB, HRC и HRA; твердость вычисляется по формуле HR = 100 − kd, где d - глубина вдавливания наконечника после снятия основной нагрузки, а k - коэффициент. Таким образом, максимальная твердость по Роквеллу соответствует HR 100.

    Метод Виккерса - твердость определяется по площади отпечатка, оставляемого четырехгранной алмазной пирамидкой, вдавливаемой в поверхность. Твердость вычисляется как отношение нагрузки, приложенной к пирамидке, к площади отпечатка (причем площадь отпечатка берется как площадь части поверхности пирамиды, а не как площадь ромба). Твердость, определенная по этому методу, обозначается HV;

    Твердость по Шору (Метод вдавливания) - твердость определяется по глубине проникновения в материал специальной закаленной стальной иглы (индентора) под действием калиброванной пружины. В данном методе измерительный прибор именуется дюрометром. Обычно метод Шора используется для определения твердости низкомодульных материалов (полимеров). Метод Шора, описанный стандартом ASTM D2240, оговаривает 12 шкал измерения. Чаще всего используются варианты A (для мягких материалов) или D (для более твердых). Твердость, определенная по этому методу, обозначается буквой используемой шкалы, записываемой после числа с явным указанием метода.

    Дюрометры и шкалы Аскер - по принципу измерения соответствует методу вдавливания (по Шору). Фирменная и национальная японская модификация метода. Используется для мягких и эластичных материалов. Отличается от классического метода Шора некоторыми параметрами измерительного прибора, фирменными наименованиями шкал и инденторами.

    Отличие от традиционного твердомера - электронный экран динамометра

    Твердость по Шору (Метод отскока) - метод определения твердости очень твердых (высокомодульных) материалов, преимущественно металлов, по высоте, на которую после удара отскакивает специальный боек (основная часть склероскопа - измерительного прибора для данного метода), падающий с определенной высоты. Твердость по этому методу Шора оценивается в условных единицах, пропорциональных высоте отскакивания бойка. Основные шкалы C и D. Обозначается HSx, где H - Hardness, S - Shore и x - латинская буква, обозначающая тип использованной при измерении шкалы.

    Следует понимать, что хотя оба метода Шора являются методами измерения твердости, предложены одним и тем же автором, имеют совпадающие названия и совпадающие обозначения шкал, это, все-таки, не версии одного метода, а два принципиально разных метода с разными значениями шкал, описываемых разными стандартами.

    Метод Кузнецова - Герберта - Ребиндера - твердость определяется временем затухания колебаний маятника, опорой которого является исследуемый металл;

    Метод Польди (двойного отпечатка шарика) - твердость оценивается в сравнении с твердостью эталона, испытание производится путем ударного вдавливания стального шарика одновременно в образец и эталон;

    Шкала Мооса - определяется по тому, какой из десяти стандартных минералов царапает тестируемый материал, и какой материал из десяти стандартных минералов царапается тестируемым материалом.

    Метод Бухгольца - метод определения твердости при помощи прибора Бухгольца. Предназначен для испытания на твердость (твердость по Бухгольцу) полимерных лакокрасочных покрытий при вдавливании индентора Бухгольца. Метод регламентируют стандарты ISO 2815, DIN 53153, ГОСТ 22233.

    Методы измерения твердости делятся на две основные категории: статические методы определения твердости и динамические методы определения твердости. Для инструментального определения твердости используются приборы, именуемые твердомерами. Методы определения твердости, в зависимости от степени воздействия на объект, могут относиться как к неразрушающим, так и к разрушающим методам.

    Существующие методы определения твердости не отражают целиком какого-нибудь одного определенного фундаментального свойства материалов, поэтому не существует прямой взаимосвязи между разными шкалами и методами, но существуют приближенные таблицы, связывающие шкалы отдельных методов для определенных групп и категорий материалов. Данные таблицы построены только по результатам экспериментальных тестов и не существует теорий, позволяющих расчетным методом перейти от одного способа определения твердости к другому. Конкретный способ определения твердости выбирается исходя из свойств материала, задач измерения, условий его проведения, имеющейся аппаратуры и др.

    В России стандартизированы не все шкалы твердости. В изготовлении ножей, а также при их продаже, применении и, конечно, в различных обсуждениях используется и, соответственно, чаще всего имеется в виду шкала Роквелла. А именно — HRC.

    Шкалы твёрдости по Роквеллу

    Существует целых одиннадцать шкал определения твердости по методу Роквелла, основанных на комбинации «индентор (наконечник) - нагрузка». Наиболее широко используются два типа индентеров: шарик из карбида вольфрама диаметром 1/16 дюйма (1,5875 мм) или такой же шарик из закаленной стали и конический алмазный наконечник с углом при вершине 120°. Возможные нагрузки - 60, 100 и 150 кгс. Величина твёрдости определяется как относительная разница в глубине проникновения индентора при приложении основной и предварительной (10 кгс) нагрузки.Для обозначения твёрдости, определённой по методу Роквелла, используется символ HR, к которому добавляется буква, указывающая на шкалу по которой проводились испытания (HRA, HRB, HRC).

    НАИБОЛЕЕ ШИРОКО ИСПОЛЬЗУЕМЫЕ ШКАЛЫ ТВЁРДОСТИ ПО РОКВЕЛЛУ

    Шкала

    Индентор

    Алмазный конус с углом 120° при вершине 60 кгс

    Шарик диам. 1/16 дюйма из карбида вольфрама (или закаленной стали)

    100 кгс
    Алмазный конус с углом 120 ° при вершине 150 кгс

    Чем твёрже материал, тем меньше будет глубина проникновения наконечника в него. Чтобы при большей твёрдости материала получалось большее число твёрдости по Роквеллу, вводят условную шкалу глубин, принимая за одно её деление глубину, равную 0.002 мм. При испытании алмазным конусом предельная глубина внедрения составляет 0.2 мм, или 0.2 / 0.002 = 100 делений, при испытании шариком - 0.26 мм, или 0.26 / 0.002 = 130 делений. Таким образом формулы для вычисления значения твёрдости будут выглядеть следующим образом:

    а) при измерении по шкале А (HRA) и С (HRC):

    H=100-(H-h)/0.002

    Разность H − h представляет разность глубин погружения индентора (в миллиметрах) после снятия основной нагрузки и до её приложения (при предварительном нагружении)

    б) при измерени по шкале B (HRB):

    H=130-(H-h)/0.002

    Связь между результатами проверки на твёрдость и прочностными характеристиками материалов исследовались такими учёными-материаловедами, как Н. Н. Давиденков, М. П. Марковец и др. Используются методы определения предела текучести по результатам проверки на твёрдость вдавливанием. Такая связь была найдена, например, для высокохромистых нержавеющих сталей после различных режимов термообработки. Среднее отклонение для конического алмазного индентора составляло всего +0,9 %. Были проведены исследования по нахождению связи между значениями твёрдости и другими характеристиками, определяемыми при растяжении, как предел прочности (временное сопротивление, сужение в шейке и истинное сопротивление разрушению).

    Применительно к твердости сталей, из которых изготавливаются ножи, установлены следующие величины, зависящие также от способа термической обработки:

    Марки стали

    Термообработка

    Твердость (сердцевина-поверхность)

    нормализация

    163-192 HB

    улучшение

    192-228 HB

    нормализация

    179-207 HB

    улучшение

    235-262 HB

    закалка и высокий отпуск

    212-248 HB

    закалка и высокий отпуск

    217-255 HB

    закалка и высокий отпуск

    229-269 HB

    закалка и высокий отпуск

    269-302 HB

    У9

    отжиг

    192 HB

    У9

    закалка

    50-58 HRC

    У10

    отжиг

    197 HB

    У10

    закалка

    62-63 HRC

    40 Х

    улучшение

    235-262 HB

    40 Х

    45-50 HRC; 269-302 HB

    40 ХН

    улучшение

    235-262 HB

    40 ХН

    улучшение+закалка токами высокой частоты

    48-53 HRC; 269-302 HB

    35 ХМ

    улучшение

    235-262 HB

    35 ХМ

    улучшение+закалка токами высокой частоты

    48-53 HRC; 269-302 HB

    35 Л

    нормализация

    163-207 HB

    40 Л

    нормализация

    147 HB

    40 ГЛ

    улучшение

    235-262 HB

    45 Л

    улучшение

    207-235 HB

    Сравнивая показатели разных шкал разных методов измерения твердости стали, легко можно запутаться. Чтобы этого не случилось, следует знать о таблицах соответствия значений твердости разных шкал. Глядя на нее, становится понятно, откуда могут возникнуть причины заблуждений относительно максимальной твердости стали ножа и нелепые требования предоставить нож твердостью в 90, а то и больше, единиц!

    Твердость по Роквеллу

    Твердость по Шору

    Твердость по Бринелю

    Твердость по Виккерсу

    HRC

    HRB

    HRA

    HSh

    HB

    HV

    86.5

    86.0

    85.5

    85.0

    102

    1076

    1004

    942

    894

    84.5

    84.0

    83.5

    83.0

    854

    820

    789

    763

    82.5

    81.5

    81.0

    80.5

    739

    715

    695

    675

    <-

    80.0

    79.5

    78.5

    655

    636

    617

    598

    78.0

    77.5

    77.0

    76.5

    580

    562

    545

    528

    76.0

    75.5

    74.5

    74.0

    513

    498

    485

    471

    73.5

    73.0

    444

    437

    429

    426

    458

    446

    71.5

    415

    401

    393

    388

    435

    413

    375

    372

    352

    341

    393

    <-

    373

    332

    321

    312

    302

    353

    334

    297

    293

    290

    283

    317

    301

    277

    270

    260

    255

    285

    271

    100

    250

    248

    241

    240

    257

    446

    235

    234

    230

    229

    236

    На деле же, как видно из таблицы, ножевых сталей с твердостью свыше 70HRC не существует. А на практике не встречается ножей из стали твердостью свыше 65HRC. Самыми распространенными и прекрасно используемыми являются ножи из дамасской стали с твердостью 56-62HRC.

    Рабочие ножи компании «Русский булат» изготавливаются в основном из дамасской стали, гарантированно имеющей твердость в этом диапазоне. Заготовки изготавливаются из стали, выкованной в собственной кузне. После завершения процесса производства ножи «Русского булата» выборочно проходят проверку на соответствие заявленным параметрам. В том числе и твердости материала .

    При желании Вы можете самостоятельно провести эксперимент по измерению твердости материала, руководствуясь, например, .

    Тем же ценителям ножей, которые желают выбирать нож с помощью краш-тестов, рекомендуем попытаться купить себе таким способом автомобиль в автосалоне.

    По материалам интернет-ресурсов